数学基础 -- 取对数求导法

取对数求导法

取对数求导法是一种用于简化复杂函数求导的数学技巧,尤其在处理幂函数、乘积函数或商函数时非常有效。具体来说,取对数求导法通过对函数两边取自然对数,将乘积、商等运算转化为加法或减法,然后再进行求导,这样能简化计算过程。

假设有一个复杂的函数 y = f ( x ) y = f(x) y=f(x),可以通过以下步骤使用取对数求导法来简化求导:

  1. 两边取自然对数:对函数两边同时取自然对数。
    ln ⁡ ( y ) = ln ⁡ ( f ( x ) ) \ln(y) = \ln(f(x)) ln(y)=ln(f(x))

  2. 求导:对等式两边分别对 x x x 求导,记住要使用链式法则。
    d d x [ ln ⁡ ( y ) ] = d d x [ ln ⁡ ( f ( x ) ) ] \frac{d}{dx}[\ln(y)] = \frac{d}{dx}[\ln(f(x))] dxd[ln(y)]=dxd[ln(f(x))]
    其中,左边的导数为 1 y ⋅ d y d x \frac{1}{y} \cdot \frac{dy}{dx} y1dxdy,右边则根据具体的 f ( x ) f(x) f(x) 进行求导。

  3. 解出导数:将 d y d x \frac{dy}{dx} dxdy 表达出来,最终得到导数公式。

举例

示例1:幂函数

考虑函数 y = x a y = x^a y=xa,其中 a a a 是常数。直接求导较为简单,但用取对数求导法更能理解这种方法。

  1. 两边取自然对数:
    ln ⁡ ( y ) = ln ⁡ ( x a ) = a ln ⁡ ( x ) \ln(y) = \ln(x^a) = a \ln(x) ln(y)=ln(xa)=aln(x)

  2. 对两边求导:
    1 y ⋅ d y d x = a ⋅ 1 x \frac{1}{y} \cdot \frac{dy}{dx} = a \cdot \frac{1}{x} y1dxdy=ax1

  3. 解出导数:
    d y d x = y ⋅ a x = x a ⋅ a x = a ⋅ x a − 1 \frac{dy}{dx} = y \cdot \frac{a}{x} = x^a \cdot \frac{a}{x} = a \cdot x^{a-1} dxdy=yxa=xaxa=axa1

示例2:乘积函数

考虑函数 y = x 2 ⋅ e x y = x^2 \cdot e^x y=x2ex,直接求导需要使用乘积法则,但使用取对数求导法也可以简化。

  1. 两边取自然对数:
    ln ⁡ ( y ) = ln ⁡ ( x 2 ⋅ e x ) = ln ⁡ ( x 2 ) + ln ⁡ ( e x ) = 2 ln ⁡ ( x ) + x \ln(y) = \ln(x^2 \cdot e^x) = \ln(x^2) + \ln(e^x) = 2 \ln(x) + x ln(y)=ln(x2ex)=ln(x2)+ln(ex)=2ln(x)+x

  2. 对两边求导:
    1 y ⋅ d y d x = 2 ⋅ 1 x + 1 \frac{1}{y} \cdot \frac{dy}{dx} = 2 \cdot \frac{1}{x} + 1 y1dxdy=2x1+1

  3. 解出导数:
    d y d x = y ⋅ ( 2 x + 1 ) = x 2 ⋅ e x ⋅ ( 2 x + 1 ) \frac{dy}{dx} = y \cdot \left( \frac{2}{x} + 1 \right) = x^2 \cdot e^x \cdot \left( \frac{2}{x} + 1 \right) dxdy=y(x2+1)=x2ex(x2+1)

适用场景

  • 处理乘积、商、幂等复合函数。
  • 化简求导过程,避免复杂的乘积法则、链式法则或商法则。
  • 处理指数函数或对数函数等特殊函数。

这种方法尤其在工程、物理等涉及复杂公式的领域中非常有用。

  • 9
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值