CINTA作业3

1.设G是群,对任意n ∈ N, i ∈ [0, n],gi ∈ G。证明g0g1 · · · gn 的逆元是 g n − 1 ⋅ ⋅ ⋅ g 1 − 1 g 0 − 1 gn^{-1}· · · g1^{-1}g0^{-1} gn1⋅⋅⋅g11g01
证:由数学归纳法
g0的逆元是 g 0 − 1 g0^{-1} g01
假设对于k个数,temp=g0g1 · · · gk,他的逆元是 t e m p − 1 = g k − 1 ⋅ ⋅ ⋅ g 1 − 1 g 0 − 1 temp^{-1}=gk^{-1}· · · g1^{-1}g0^{-1} temp1=gk1⋅⋅⋅g11g01
当有k+1个数时,g0g1 · · · gkgk+1=temp*gk+1。
他的逆元是 g k + 1 − 1 t e m p − 1 = g k + 1 − 1 g k − 1 ⋅ ⋅ ⋅ g 1 − 1 g 0 − 1 gk+1^{-1}temp^{-1}=gk+1^{-1}gk^{-1}· · · g1^{-1}g0^{-1} gk+11temp1=gk+11gk1⋅⋅⋅g11g01
所以g0g1 · · · gn 的逆元是 g n − 1 ⋅ ⋅ ⋅ g 1 − 1 g 0 − 1 gn^{-1}· · · g1^{-1}g0^{-1} gn1⋅⋅⋅g11g01

2.证明:任意群 G 的两个子群的交集也是群 G 的子群。
证:G的两个子群是G的子集,所以这两个子群的交集也是G的子集。设这个两个子集为交集为H1,H2,同时a,b属于H1∩H2。即a,b属于H1也属于H2,对于H1,因为是G的子群,所以 a ∗ b − 1 a*b^{-1} ab1属于H1,同理 a ∗ b − 1 a*b^{-1} ab1属于H2,所以 a ∗ b − 1 a*b^{-1} ab1属于H1∩H2,根据命题6.9,H1∩H2是G的子群。

3.证明或证伪:任意群 G 的两个子群的并集也是群 G 的子群。
证:假设G的两个子群是H1和H2,H1∪H2也是群G的子群。则令a,b属于H1∪H2,(假设其中a属于H1,b属于H2),此时会有ab属于H1∪H2, a − 1 a^{-1} a1属于H1∪H2,若ab和 a − 1 a^{-1} a1均属于H1,此时 a ∗ b ∗ a − 1 a*b*a^{-1} aba1即b也应该属于H1,但b属于H2,由此可见这种情况下不满足。所以是假命题。

4.G 是阿贝尔群,H 和 K 是 G 的子群。请证明 HK = {hk : h ∈ H, k ∈ K} 是群 G 的子群。如果 G 不是阿贝尔群,结论是否依然成立?
证:因为H,K是G的子群,所以h,k, h − 1 , k − 1 h^{-1},k^{-1} h1,k1也属于阿贝尔群G,所以任意h,k满足hk=kh,显然HK是G的子集。取 a = h 1 k 1 , b = h 2 k 2 a=h1k1,b=h2k2 a=h1k1,b=h2k2, b − 1 = k 2 − 1 h 2 − 1 = h 2 − 1 k 2 − 1 ( h k = k h ), b^{-1}=k2^{-1}h2^{-1}=h2^{-1}k2^{-1}(hk=kh), b1=k21h21=h21k21hk=kh), a b − 1 = h 1 k 1 h 2 − 1 k 2 − 1 = h 1 h 2 − 1 k 1 k 2 − 1 ( h k = k h ) ab^{-1}=h1k1h2^{-1}k2^{-1}=h1h2^{-1}k1k2^{-1}(hk=kh) ab1=h1k1h21k21=h1h21k1k21(hk=kh)。因为H,K是群,所以有封闭性,则令 h 1 h 2 − 1 = h 3 , k 1 k 2 − 1 = k 3 h1h2^{-1}=h3,k1k2^{-1}=k3 h1h21=h3,k1k21=k3
所以 a b − 1 = h 3 k 3 ab^{-1}=h3k3 ab1=h3k3,属于HK。所以HK是G的子群。

若G不是阿贝尔群,则无法证明HK存在逆元和单位元

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值