1.设G是群,对任意n ∈ N, i ∈ [0, n],gi ∈ G。证明g0g1 · · · gn 的逆元是
g
n
−
1
⋅
⋅
⋅
g
1
−
1
g
0
−
1
gn^{-1}· · · g1^{-1}g0^{-1}
gn−1⋅⋅⋅g1−1g0−1
证:由数学归纳法
g0的逆元是
g
0
−
1
g0^{-1}
g0−1
假设对于k个数,temp=g0g1 · · · gk,他的逆元是
t
e
m
p
−
1
=
g
k
−
1
⋅
⋅
⋅
g
1
−
1
g
0
−
1
temp^{-1}=gk^{-1}· · · g1^{-1}g0^{-1}
temp−1=gk−1⋅⋅⋅g1−1g0−1。
当有k+1个数时,g0g1 · · · gkgk+1=temp*gk+1。
他的逆元是
g
k
+
1
−
1
t
e
m
p
−
1
=
g
k
+
1
−
1
g
k
−
1
⋅
⋅
⋅
g
1
−
1
g
0
−
1
gk+1^{-1}temp^{-1}=gk+1^{-1}gk^{-1}· · · g1^{-1}g0^{-1}
gk+1−1temp−1=gk+1−1gk−1⋅⋅⋅g1−1g0−1。
所以g0g1 · · · gn 的逆元是
g
n
−
1
⋅
⋅
⋅
g
1
−
1
g
0
−
1
gn^{-1}· · · g1^{-1}g0^{-1}
gn−1⋅⋅⋅g1−1g0−1
2.证明:任意群 G 的两个子群的交集也是群 G 的子群。
证:G的两个子群是G的子集,所以这两个子群的交集也是G的子集。设这个两个子集为交集为H1,H2,同时a,b属于H1∩H2。即a,b属于H1也属于H2,对于H1,因为是G的子群,所以
a
∗
b
−
1
a*b^{-1}
a∗b−1属于H1,同理
a
∗
b
−
1
a*b^{-1}
a∗b−1属于H2,所以
a
∗
b
−
1
a*b^{-1}
a∗b−1属于H1∩H2,根据命题6.9,H1∩H2是G的子群。
3.证明或证伪:任意群 G 的两个子群的并集也是群 G 的子群。
证:假设G的两个子群是H1和H2,H1∪H2也是群G的子群。则令a,b属于H1∪H2,(假设其中a属于H1,b属于H2),此时会有ab属于H1∪H2,
a
−
1
a^{-1}
a−1属于H1∪H2,若ab和
a
−
1
a^{-1}
a−1均属于H1,此时
a
∗
b
∗
a
−
1
a*b*a^{-1}
a∗b∗a−1即b也应该属于H1,但b属于H2,由此可见这种情况下不满足。所以是假命题。
4.G 是阿贝尔群,H 和 K 是 G 的子群。请证明 HK = {hk : h ∈ H, k ∈ K} 是群 G 的子群。如果 G 不是阿贝尔群,结论是否依然成立?
证:因为H,K是G的子群,所以h,k,
h
−
1
,
k
−
1
h^{-1},k^{-1}
h−1,k−1也属于阿贝尔群G,所以任意h,k满足hk=kh,显然HK是G的子集。取
a
=
h
1
k
1
,
b
=
h
2
k
2
a=h1k1,b=h2k2
a=h1k1,b=h2k2,
b
−
1
=
k
2
−
1
h
2
−
1
=
h
2
−
1
k
2
−
1
(
h
k
=
k
h
),
b^{-1}=k2^{-1}h2^{-1}=h2^{-1}k2^{-1}(hk=kh),
b−1=k2−1h2−1=h2−1k2−1(hk=kh),则
a
b
−
1
=
h
1
k
1
h
2
−
1
k
2
−
1
=
h
1
h
2
−
1
k
1
k
2
−
1
(
h
k
=
k
h
)
ab^{-1}=h1k1h2^{-1}k2^{-1}=h1h2^{-1}k1k2^{-1}(hk=kh)
ab−1=h1k1h2−1k2−1=h1h2−1k1k2−1(hk=kh)。因为H,K是群,所以有封闭性,则令
h
1
h
2
−
1
=
h
3
,
k
1
k
2
−
1
=
k
3
h1h2^{-1}=h3,k1k2^{-1}=k3
h1h2−1=h3,k1k2−1=k3
所以
a
b
−
1
=
h
3
k
3
ab^{-1}=h3k3
ab−1=h3k3,属于HK。所以HK是G的子群。
若G不是阿贝尔群,则无法证明HK存在逆元和单位元