CINTA作业3

1.设G是群,对任意n ∈ N, i ∈ [0, n],gi ∈ G。证明g0g1 · · · gn 的逆元是 g n − 1 ⋅ ⋅ ⋅ g 1 − 1 g 0 − 1 gn^{-1}· · · g1^{-1}g0^{-1} gn1⋅⋅⋅g11g01
证:由数学归纳法
g0的逆元是 g 0 − 1 g0^{-1} g01
假设对于k个数,temp=g0g1 · · · gk,他的逆元是 t e m p − 1 = g k − 1 ⋅ ⋅ ⋅ g 1 − 1 g 0 − 1 temp^{-1}=gk^{-1}· · · g1^{-1}g0^{-1} temp1=gk1⋅⋅⋅g11g01
当有k+1个数时,g0g1 · · · gkgk+1=temp*gk+1。
他的逆元是 g k + 1 − 1 t e m p − 1 = g k + 1 − 1 g k − 1 ⋅ ⋅ ⋅ g 1 − 1 g 0 − 1 gk+1^{-1}temp^{-1}=gk+1^{-1}gk^{-1}· · · g1^{-1}g0^{-1} gk+11temp1=gk+11gk1⋅⋅⋅g11g01
所以g0g1 · · · gn 的逆元是 g n − 1 ⋅ ⋅ ⋅ g 1 − 1 g 0 − 1 gn^{-1}· · · g1^{-1}g0^{-1} gn1⋅⋅⋅g11g01

2.证明:任意群 G 的两个子群的交集也是群 G 的子群。
证:G的两个子群是G的子集,所以这两个子群的交集也是G的子集。设这个两个子集为交集为H1,H2,同时a,b属于H1∩H2。即a,b属于H1也属于H2,对于H1,因为是G的子群,所以 a ∗ b − 1 a*b^{-1} ab1属于H1,同理 a ∗ b − 1 a*b^{-1} ab1属于H2,所以 a ∗ b − 1 a*b^{-1} ab1属于H1∩H2,根据命题6.9,H1∩H2是G的子群。

3.证明或证伪:任意群 G 的两个子群的并集也是群 G 的子群。
证:假设G的两个子群是H1和H2,H1∪H2也是群G的子群。则令a,b属于H1∪H2,(假设其中a属于H1,b属于H2),此时会有ab属于H1∪H2, a − 1 a^{-1} a1属于H1∪H2,若ab和 a − 1 a^{-1} a1均属于H1,此时 a ∗ b ∗ a − 1 a*b*a^{-1} aba1即b也应该属于H1,但b属于H2,由此可见这种情况下不满足。所以是假命题。

4.G 是阿贝尔群,H 和 K 是 G 的子群。请证明 HK = {hk : h ∈ H, k ∈ K} 是群 G 的子群。如果 G 不是阿贝尔群,结论是否依然成立?
证:因为H,K是G的子群,所以h,k, h − 1 , k − 1 h^{-1},k^{-1} h1,k1也属于阿贝尔群G,所以任意h,k满足hk=kh,显然HK是G的子集。取 a = h 1 k 1 , b = h 2 k 2 a=h1k1,b=h2k2 a=h1k1,b=h2k2, b − 1 = k 2 − 1 h 2 − 1 = h 2 − 1 k 2 − 1 ( h k = k h ), b^{-1}=k2^{-1}h2^{-1}=h2^{-1}k2^{-1}(hk=kh), b1=k21h21=h21k21hk=kh), a b − 1 = h 1 k 1 h 2 − 1 k 2 − 1 = h 1 h 2 − 1 k 1 k 2 − 1 ( h k = k h ) ab^{-1}=h1k1h2^{-1}k2^{-1}=h1h2^{-1}k1k2^{-1}(hk=kh) ab1=h1k1h21k21=h1h21k1k21(hk=kh)。因为H,K是群,所以有封闭性,则令 h 1 h 2 − 1 = h 3 , k 1 k 2 − 1 = k 3 h1h2^{-1}=h3,k1k2^{-1}=k3 h1h21=h3,k1k21=k3
所以 a b − 1 = h 3 k 3 ab^{-1}=h3k3 ab1=h3k3,属于HK。所以HK是G的子群。

若G不是阿贝尔群,则无法证明HK存在逆元和单位元

内容概要:该题库专为研究生入学考试计算机组成原理科目设计,涵盖名校考研真题、经典教材课后习题、章节题库和模拟试题四大核心模块。名校考研真题精选多所知名高校的计算机组成原理科目及计算机联考真题,并提供详尽解析,帮助考生把握考研命题趋势与难度。经典教材课后习题包括白中英《计算机组成原理》(第5版)和唐朔飞《计算机组成原理》(第2版)的全部课后习题解答,这两部教材被众多名校列为考研指定参考书目。章节题库精选代表性考题,注重基础知识与重难点内容,帮助考生全面掌握考试大纲要求的知识点。模拟试题依据历年考研真题命题规律和热门考点,精心编制两套全真模拟试题,并附标准答案,帮助考生检验学习成果,评估应试能力。 适用人群:计划参加研究生入学考试并报考计算机组成原理科目的考生,尤其是需要系统复习和强化训练的学生。 使用场景及目标:①通过研读名校考研真题,考生可以准确把握考研命题趋势与难度,有效评估复习成效;②通过经典教材课后习题的练习,考生可以巩固基础知识,掌握解题技巧;③通过章节题库的系统练习,考生可以全面掌握考试大纲要求的各个知识点,为备考打下坚实基础;④通过模拟试题的测试,考生可以检验学习成果,评估应试能力,为正式考试做好充分准备。 其他说明:该题库不仅提供详细的题目解析,还涵盖了计算机组成原理的各个方面,包括计算机系统概述、数据表示与运算、存储器分层、指令系统、中央处理器、总线系统和输入输出系统等。考生在使用过程中应结合理论学习与实践操作,注重理解与应用,以提高应试能力和专业知识水平。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值