huggingface 镜像站推荐

在做 Ai 应用开发或者学习的时候,我们经常需要下载各种模型,而 huggingface 的模型下载速度很慢或者根本就连不上,这里推荐一个 huggingface 的镜像站,速度很快,可以大大提高我们的效率。

推荐一个 huggingface 的镜像站:https://hf-mirror.com/

使用教程

视频演示

示例

pip install -U huggingface_hub
import os
// 设置环境变量,下载器就会使用镜像站
os.environ["HF_ENDPOINT"] = 
### Hugging Face 镜像站点下载文件体积过小或不完整的解决方案 当遇到从Hugging Face镜像站点下载的文件体积明显偏小,可能存在文件未完全传输或其他问题的情况时,有几种方法可以帮助解决这个问题。 #### 检查网络连接稳定性 确保用于下载的网络环境稳定可靠。不稳定或间歇性的互联网连接可能导致文件未能成功完成整个下载过程[^1]。 ```bash ping huggingface.co ``` 上述命令可用于测试到目标服务器之间的连通性和延迟情况。 #### 使用官方推荐工具进行下载 利用`transformers`库自带的功能来获取模型权重和其他资源能够有效减少手动操作带来的风险,并自动处理一些潜在错误。 安装并更新至最新版本: ```bash pip install --upgrade transformers ``` 通过Python脚本调用API接口实现自动化加载指定名称下的预训练模型及其配置参数: ```python from transformers import AutoModelForSequenceClassification, AutoTokenizer model_name = "distilbert-base-uncased-finetuned-sst-2-english" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSequenceClassification.from_pretrained(model_name) ``` 这种方法不仅简化了流程还提高了成功率,因为这些函数内部已经集成了重试机制以及进度条显示等功能。 #### 手动验证已下载文件完整性 对于那些仍然希望通过直接链接方式进行下载的情形,则建议在完成后立即校验SHA256哈希值以确认数据无误。通常情况下,在仓库页面上会提供相应的checksum供对比参考。 计算本地文件对应的散列码: ```bash sha256sum path/to/downloaded/file ``` 将得到的结果同官方网站给出的标准答案相比较,如果两者一致则说明该副本是可靠的;反之则需重新尝试获取直至匹配为止。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值