“不传递消息、不使用邻接矩阵、在边集上训练”: 从对比链接中蒸馏自知识:非消息传递的图节点分类...

来源:深度学习与图网络

本文约800字,建议阅读5分钟 本文从图网络的边中蒸馏知识,使 MLP 在图节点分类任务上达到了 GNN 的表现。

这篇文章从图网络的边中蒸馏知识,使 MLP 在图节点分类任务上达到了 GNN 的表现。不传递消息、不使用邻接矩阵、在边集上训练,因此空间占用低、分类速度快。

此外,作者还从随机点对中蒸馏“逆边”的知识,进一步提升了模型的效果。

方法

分叉 MLP

通常的图神经网络方法(GNN)基于消息传递模式,使用邻居节点传递来的消息帮助中心节点的分类。那么反过来说,任一节点中应含有其邻居节点的部分信息。

因此构造分叉 MLP:从 MLP 的倒数第二层分叉出另一个输出层,为与原输出层相区别称为“推理层”。分叉 MLP 接受一个节点的特征作为输入,输出该节点和它邻居节点的标签分布。

边蒸馏(Link Distillation)

边蒸馏


随机点对的对比蒸馏

如果随机采样一对节点,这对节点之间就(大概率)不能借助分叉 MLP 相互推导了。因此用对比学习的思路,最大化一个节点的标签和另一个节点的推理层输出之间的交叉熵,同时最大化一个节点的输出层输出和另一个节点的推理层输出。

逆边的对比蒸馏


两种分类模式

分叉 MLP 训练好后,可以将推理层扔掉变回一个经典的 MLP 结构,输入节点特征对节点进行分类。这种模型根据是否对逆边做对比蒸馏命名为 CoLinkDistMLP 和 LinkDistMLP。

另外,也可以保留推理层,将输出加到邻居节点上,提升邻居节点的分类准确率。但这样一来,就相当于又用上消息传递模式了。这种模型根据是否对逆边做对比蒸馏在文章中称为 CoLinkDist 和 LinkDist。

实验

做了归纳式、转导式和全监督三种设置下 8 个常用图数据集的节点分类实验,对比的基准除了 MLP 和 GCN 以外,还有 GCN2MLP 代表用训练好的 GCN 模型蒸馏得到的 MLP。

半监督、归纳式:

semi-supervised and inductive

半监督、转导式:

semi-supervised and transductive

全监督(转导式):

full-supervised

实验结果

  1. 即使仅仅是 LinkDistMLP,也接近甚至超过了 GCN 的表现,说明这种方式训练出的 MLP 确实能达到 GNN 的效果。

  2. 用上消息传递和对比蒸馏能进一步提升模型效果。

  3. GCN2MLP 在半监督时效果比 GCN 还要好,但在全监督时可用于蒸馏的知识不

    多,最后表现跟 MLP 差不多。

此外,还用了 Open Graph Benchmark 的数据集进行节点分类实验

OGB

本文来源:

https://cf020031308.github.io/papers/2021-distilling-self-knowledge-from-contrastive-links-to-classify-graph-nodes-without-passing-messages/

编辑:于腾凯

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值