干货 | 数字经济创新创业——如何发展绿色经济

本文探讨了绿色经济在全球变暖和环境挑战面前的重要性,指出数字技术在推动经济发展的同时,也带来了能源消耗和污染问题。文章通过分析不同行业的温室气体排放,强调了寻找可替代能源的紧迫性。此外,文章还提到了技术如物联网、AI和绿色经济的潜力,但也警告了技术失控的风险。最后,文中分享了印度在碳中和项目上的努力,包括太阳能、风能和能源存储技术的研发,以及对现有产业进行绿色转型的挑战和策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

ec993d34b7633e68541573d72b9e941f.png

下文整理自清华大学大数据能力提升项目能力提升模块课程“Innovation & Entrepreneurship for Digital Economy”(数字经济创新创业课程)的精彩内容。

主讲嘉宾:

Kris Singh: CEO at SRII, Palo Alto, California

Visiting Professor of Tsinghua University

Ashok Jhunjhunwala:President, IITM Research Park, India

今天我想从更高层次向大家分享绿色经济(Green Economy)相关内容。绿色经济是一个非常大的课题,这个课题不仅影响个体,也影响个体所在的国家甚至整个世界,因为这个课题是关于世界变化的。一方面,我们变得越来越数字化,工业越来越先进,经济越来越发达,生活方式也变得更好;但是另一方面,我们经济最大的挑战是能源。我们需要能源为飞机、汽车提供动力、建工厂、大楼都需要能源。我们历来都依赖于能源,比如煤炭和化石燃料等,都是我们的能源首选。但是这些能源也带来了巨大的环境污染,比如二氧化碳和其他有毒气体等大量释放到大气中。

现在的问题是,一方面我们不能停止修建工厂、大楼,也不能停止经济增长,但同时我们也要找到最佳的能源。我们需要能源但却不能依赖能源,因为其带来了全球变暖和其他气候变化的问题。作为我们人类文明生存的重要手段,几乎所有国家以及全球的企业和组织都致力于绿色经济课题,这对我们的项目也非常重要,因为你们都是未来经济、社会的一部分,这关乎你们的工作、生活方式。但好消息是现在很多人都在努力开展这方面的工作,我也将讨论其中的一些重要话题。

a0adf891816f34a3e107ad85d35ba824.png 

c0278f8c94e66b11f88cc986296cab99.png

首先,绿色经济对很多领域都很重要,经济,能源,环境和人类健康。没有强大的经济支撑,我们则无法生存,但经济发展需要大量能源,能源带来了环境的挑战,与此同时也污染了环境,这会影响人类文明的健康。如果我们不解决这些问题,整个人类文明将会面临严峻的威胁。如果你看一看科学家们的数据,气温上升了2℃就带来了如此多的问题,如果气候持续变暖又将带来更加严重的问题。那必将导致环境条件更不易于人类生存。

28e955222c64973191bce6cd2909aa0d.png 

454be7d8cbd7476f2ec4f837e76e5c58.png

看看气体排放情况,在这张饼图上,可以看到不同行业排放温室气体的情况,工业、农业、电力、交通和其他行业是温室气体排放的主要组成部分,我们需要找到可替代能源。绿色经济技术将会成为下一个经济前沿,因为有太多工作需要通过找到替代能源来实现。目前有大量的工作已经在进行中,几周前,位于硅谷的斯坦福大学成立了可持续性研究院,很多财富大亨比尔·盖茨和约翰·杜尔等已经投资了几十亿用于建立绿色经济研究中心,主要围绕发现可替代能源展开。

79cf8a179b9047b64f845f7770ff1329.png 

f3f5a05d2c6c461363e92dcb0b929d76.png

从国家层面上来看,中国是世界上二氧化碳排放占比最高的国家(35.4%࿰

### 回答1: Spark Streaming 和 Flink 都是流处理框架,但在一些方面有所不同。 1. 数据处理模型 Spark Streaming 基于批处理模型,将流数据分成一批批进行处理。而 Flink 则是基于流处理模型,可以实时处理数据流。 2. 窗口处理 Spark Streaming 的窗口处理是基于时间的,即将一段时间内的数据作为一个窗口进行处理。而 Flink 的窗口处理可以基于时间和数据量,可以更加灵活地进行窗口处理。 3. 状态管理 Spark Streaming 的状态管理是基于 RDD 的,需要将状态存储在内存中。而 Flink 的状态管理是基于内存和磁盘的,可以更加灵活地管理状态。 4. 容错性 Flink 的容错性比 Spark Streaming 更加强大,可以在节点故障时快速恢复,而 Spark Streaming 则需要重新计算整个批次的数据。 总的来说,Flink 在流处理方面更加强大和灵活,而 Spark Streaming 则更适合批处理和数据仓库等场景。 ### 回答2: Spark Streaming 和 Flink 都是流处理框架,它们都支持低延迟的流处理和高吞吐量的批处理。但是,它们在处理数据流的方式和性能上有许多不同之处。下面是它们的详细比较: 1. 处理模型 Spark Streaming 采用离散化流处理模型(DPM),将长周期的数据流划分为离散化的小批量,每个批次的数据被存储在 RDD 中进行处理,因此 Spark Streaming 具有较好的容错性和可靠性。而 Flink 采用连续流处理模型(CPM),能够在其流处理过程中进行事件时间处理和状态管理,因此 Flink 更适合处理需要精确时间戳和状态管理的应用场景。 2. 数据延迟 Spark Streaming 在处理数据流时会有一定的延迟,主要是由于对数据进行缓存和离散化处理的原因。而 Flink 的数据延迟比 Spark Streaming 更低,因为 Flink 的数据处理和计算过程是实时进行的,不需要缓存和离散化处理。 3. 机器资源和负载均衡 Spark Streaming 采用了 Spark 的机器资源调度和负载均衡机制,它们之间具有相同的容错和资源管理特性。而 Flink 使用 Yarn 和 Mesos 等分布式计算框架进行机器资源调度和负载均衡,因此 Flink 在大规模集群上的性能表现更好。 4. 数据窗口处理 Spark Streaming 提供了滑动、翻转和窗口操作等灵活的数据窗口处理功能,可以使用户更好地控制数据处理的逻辑。而 Flink 也提供了滚动窗口和滑动窗口处理功能,但相对于 Spark Streaming 更加灵活,可以在事件时间和处理时间上进行窗口处理,并且支持增量聚合和全量聚合两种方式。 5. 集成生态系统 Spark Streaming 作为 Apache Spark 的一部分,可以充分利用 Spark 的分布式计算和批处理生态系统,并且支持许多不同类型的数据源,包括Kafka、Flume和HDFS等。而 Flink 提供了完整的流处理生态系统,包括流SQL查询、流机器学习和流图形处理等功能,能够灵活地适应不同的业务场景。 总之,Spark Streaming 和 Flink 都是出色的流处理框架,在不同的场景下都能够发挥出很好的性能。选择哪种框架取决于实际需求和业务场景。 ### 回答3: Spark Streaming和Flink都是流处理引擎,但它们的设计和实现方式有所不同。在下面的对比中,我们将比较这两种流处理引擎的主要特点和差异。 1. 处理模型 Spark Streaming采用离散流处理模型,即将数据按时间间隔分割成一批一批数据进行处理。这种方式可以使得Spark Streaming具有高吞吐量和低延迟,但也会导致数据处理的粒度比较粗,难以应对大量实时事件的高吞吐量。 相比之下,Flink采用连续流处理模型,即数据的处理是连续的、实时的。与Spark Streaming不同,Flink的流处理引擎能够应对各种不同的实时场景。Flink的实时流处理能力更强,因此在某些特定的场景下,它的性能可能比Spark Streaming更好。 2. 窗口计算 Spark Streaming内置了许多的窗口计算支持,如滑动窗口、滚动窗口,但支持的窗口计算的灵活性较低,只适合于一些简单的窗口计算。而Flink的窗口计算支持非常灵活,可以支持任意窗口大小或滑动跨度。 3. 数据库支持 在处理大数据时,存储和读取数据是非常重要的。Spark Streaming通常使用HDFS作为其数据存储底层的系统。而Flink支持许多不同的数据存储形式,包括HDFS,以及许多其他开源和商业的数据存储,如Kafka、Cassandra和Elasticsearch等。 4. 处理性能 Spark Streaming的性能比Flink慢一些,尤其是在特定的情况下,例如在处理高吞吐量的数据时,在某些情况下可能受制于分批处理的架构。Flink通过其流处理模型和不同的调度器和优化器来支持更高效的实时数据处理。 5. 生态系统 Spark有着庞大的生态系统,具有成熟的ML库、图处理库、SQL框架等等。而Flink的生态系统相对较小,但它正在不断地发展壮大。 6. 规模性 Spark Streaming适用于规模小且不太复杂的项目。而Flink可扩展性更好,适用于更大、更复杂的项目。Flink也可以处理无限制的数据流。 综上所述,Spark Streaming和Flink都是流处理引擎,它们有各自的优缺点。在选择使用哪一个流处理引擎时,需要根据实际业务场景和需求进行选择。如果你的业务场景较为复杂,需要处理海量数据并且需要比较灵活的窗口计算支持,那么Flink可能是更好的选择;如果你只需要简单的流处理和一些通用的窗口计算,Spark Streaming是更为简单的选择。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值