【MIT博士论文】高效的鲁棒性和可解释性在学习和数据驱动决策中的应用

7663c6946cbb2e035b090faa96b9ee84.png

来源:专知
本文约1000字,建议阅读5分钟
本论文介绍了在机器学习中提高可靠性的算法进展,重点强调两个关键维度:鲁棒性和可解释性。

82d12f8abdf8b60c3380ea4b0f7aceea.png

随着机器学习算法在高风险应用中不断开发和部署,确保其可靠性已变得至关重要。本论文介绍了在机器学习中提高可靠性的算法进展,重点强调两个关键维度:鲁棒性和可解释性。

本论文的第一部分侧重于鲁棒性,即保证算法在各种数据不确定性下仍能提供稳定和可预测的性能。我们研究了在不同数据不确定性来源下的学习鲁棒性,包括基本的统计误差以及数据噪声和损坏。我们的研究揭示了这些不同来源如何相互作用并对数据驱动决策产生影响。我们引入了针对特定不确定性来源量身定制的新颖的分布鲁棒优化方法。我们的研究结果表明,对一种来源的保护可能会增加对另一种来源的脆弱性。为了解决这个问题,我们开发了分布模糊集,能够同时提供对所有来源的整体鲁棒性。在每种情况下,我们证明了我们的新方法实现了“高效”的鲁棒性,在平均性能与样本外保证之间实现了最佳平衡。我们的新算法被应用于各种场景,包括训练鲁棒神经网络,在这些场景中显著优于现有基准。

本论文的第二部分探讨了可解释性,这是高风险环境下决策支持工具的一个关键属性,要求算法能够为其决策提供可理解的解释。我们的工作在这一部分的动机来自于数据驱动的个性化患者治疗——一种越来越受欢迎的机器学习应用。在这个强化学习问题中,可解释性至关重要:医生不能依赖于一个黑箱算法来开具治疗方案。我们在理论上引入了学习连续状态空间动态系统最简洁离散表示的问题。在患者治疗的背景下,这相当于基于患者治疗过程中不断变化的特征来确定治疗组。令人惊讶的是,我们在理论上证明,仅从观察到的历史样本路径数据中就有可能学习到动态系统的最简洁表示。随后,我们开发了一种算法,MRL,能够学习这种简洁的表示,从而增强可解释性和可操作性。

55879a047f0a3d794aa6f5f9ef6a85dd.png

cab4bca96d3760056c2a7a428327af9a.png

f1769b8ecd79fa7c38019cb1a657d2d4.png

关于我们

数据派THU作为数据科学类公众号,背靠清华大学大数据研究中心,分享前沿数据科学与大数据技术创新研究动态、持续传播数据科学知识,努力建设数据人才聚集平台、打造中国大数据最强集团军。

9d793105d81445a31a080b6429cefcf0.png

新浪微博:@数据派THU

微信视频号:数据派THU

今日头条:数据派THU

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值