【CVPR2025】神经运动模拟器:在强化学习中突破世界模型的极限

来源:专知
本文约1000字,建议阅读5分钟
我们提出了神经运动模拟器 (MoSim),这是一种基于当前观测和动作预测具身系统未来物理状态的世界模型。

图片

具身系统不仅要模拟外部世界的模式,还需理解自身的运动动态。运动动态模型对于高效的技能习得和有效的规划至关重要。在本工作中,我们提出了神经运动模拟器 (MoSim),这是一种基于当前观测和动作预测具身系统未来物理状态的世界模型。MoSim 在物理状态预测方面达到了最先进的性能,并在多项下游任务中展现出竞争力的表现。该研究表明,当世界模型足够精确并能进行精确的长远预测时,它不仅能促进在想象世界中的高效技能习得,甚至可实现零样本强化学习。此外,MoSim 能将任何无模型强化学习(RL)算法转化为基于模型的方法,从而有效地将物理环境建模与 RL 算法开发解耦。这种分离使得 RL 算法与世界模型各自可以独立进步,从而显著提高样本利用效率和增强泛化能力。我们的研究表明,专注于运动动态的世界模型为开发更通用、更强大的具身系统指明了一个有前途的方向。

图片

关于我们

数据派THU作为数据科学类公众号,背靠清华大学大数据研究中心,分享前沿数据科学与大数据技术创新研究动态、持续传播数据科学知识,努力建设数据人才聚集平台、打造中国大数据最强集团军。

新浪微博:@数据派THU

微信视频号:数据派THU

今日头条:数据派THU

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值