Learning Representations and Generative Models for 3D Point Clouds

计算机小白学习中查看完整翻译.
点击下载英文论文

Abstract

Three-dimensional geometric data offer an excellent domain for studying representation learning and generative modeling. In this paper, we look at geometric data represented as point clouds. We introduce a deep AutoEncoder (AE) network with state-of-the-art reconstruction quality and generalization ability. The learned representations outperform existing methods on 3D recognition tasks and enable shape editing via simple alge- braic manipulations, such as semantic part editing, shape analogies and shape interpolation, as well as shape completion. We perform a thorough study of different generative models including GANs operating on the raw point clouds, significantly improved GANs trained in the fixed latent space of our AEs, and Gaussian Mixture Models (GMMs). To quantitatively evaluate generative models we introduce measures of sample fidelity and diversity based on matchings between sets of point clouds. Interestingly, our evaluation of generalization, fidelity and diversity reveals that GMMs trained in the latent space of our AEs yield the best results overall.

摘要

三维几何数据为研究表示学习和生成建模提供了一个很好的领域。在本文中,我们研究用点云表示的几何数据。介绍了一种具有最先进的重构质量和泛化能力的deep AutoEncoder (AE) 网络。学习表示在三维识别任务上优于现有方法,通过简单的代数操作实现了形状编辑,如语义部分编辑、形状类比和形状插值以及形状补全。我们对不同的生成模型进行了深入的研究,包括在原始点云上运行的GANs、在我们AEs的固定潜空间中训练的具有显著提升的GANs以及高斯混合模型(GMMs)。为了定量地评估生成模型,我们引入了基于点云组间匹配的样本保真度和多样性度量。有趣的是,我们对泛化、保真度和多样性的评估表明,在我们的AEs的潜在空间中训练过的GMMs总体效果最好。

(3) 参考利用下面的程序代码,完成代码注释中要求的两项任务。 import re """ 下面ref是2020年CVPR的最佳论文的pdf格式直接另存为文本文件后, 截取的参考文献前6篇的文本部分。 请利用该科研文献的这部分文本,利用正则表达式、字符串处理等方法, 编程实现对这6篇参考文献按下面的方式进行排序输出。 a.按参考文献标题排序 b.按出版年份排序 """ ref = """[1] Panos Achlioptas, Olga Diamanti, Ioannis Mitliagkas, and Leonidas Guibas. Learning representations and generative models for 3D point clouds. In Proc. ICML, 2018 [2] Pulkit Agrawal, Joao Carreira, and Jitendra Malik. Learning to see by moving. In Proc. ICCV, 2015 [3] Peter N. Belhumeur, David J. Kriegman, and Alan L. Yuille. The bas-relief ambiguity. IJCV, 1999 [4] Christoph Bregler, Aaron Hertzmann, and Henning Biermann. Recovering non-rigid 3D shape from image streams. In Proc. CVPR, 2000 [5] Angel X. Chang, Thomas Funkhouser, Leonidas Guibas. Shapenet: An information-rich 3d model reposi-tory. arXiv preprint arXiv:1512.03012, 2015 [6] Ching-Hang Chen, Ambrish Tyagi, Amit Agrawal, Dy-lan Drover, Rohith MV, Stefan Stojanov, and James M. Rehg. Unsupervised 3d pose estimation with geometric self-supervision. In Proc. CVPR, 2019""" ref_str = re.sub(r'\[([0-9]{1})\]', r'$[\1]', ref) # 添加分隔$ print(ref_str) #脚手架代码 ref_str_2 = re.sub(r'([a-zA-Z]{2})\.', r'\1.#', ref_str) # 添加分隔# print(ref_str_2) #脚手架代码 ref_str2 = ref_str_2.replace("\n", "") ref_list = ref_str2.split("$") print(ref_list) #脚手架代码 [提示: 排序可以采用内置函数sorted(),语法如下: sorted(iterable, /, *, key=None, reverse=False), 注意掌握形式参数中带“/”和“*”的用途]
最新发布
05-26
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值