1.二叉树的最大深度
给定一个二叉树,找出其最大深度。二叉树的深度为根节点到最远叶子节点的最长路径上的节点数。
说明: 叶子节点是指没有子节点的节点。
考察知识点:递归
class Solution {
public:
int maxDepth(TreeNode* root) {
if(!root) return 0;
return max(maxDepth(root->left),maxDepth(root->right))+1;
}
};
2.二叉树的最小深度
给定一个二叉树,找出其最小深度。最小深度是从根节点到最近叶子节点的最短路径上的节点数量。
说明:叶子节点是指没有子节点的节点。
考察知识点:递归
思路:和求最大深度相反,求最小深度时将max换成min即可,但要注意如果根节点的左或右子树为空的话是构不成子树的。而最小深度是要求从根节点到子树的。当左或右子树为空时,不符合要求。
class Solution {
public:
int minDepth(TreeNode* root) {
if(!root) return 0;
if(root->left&&!root->right) return minDepth(root->left)+1;
if(!root->left&&root->right) return minDepth(root->right)+1;
return min(minDepth(root->left),minDepth(root->right))+1;
}
};
3.二叉树的直径
给定一棵二叉树,你需要计算它的直径长度。一棵二叉树的直径长度是任意两个结点路径长度中的最大值。这条路径可能穿过也可能不穿过根结点。
考察知识点:递归
解题思路:
- 二叉树的直径不一定过根节点,因此需要去搜一遍所有子树(例如以root,root.left, root.right…为根节点的树)对应的直径,取最大值。
- root的直径 = root左子树高度 + root右子树高度
- root的高度 = max {root左子树高度, root右子树高度} + 1
class Solution {
public:
int d=0;
int diameterOfBinaryTree(TreeNode* root) {
dfs(root);
return d;
}
int dfs(TreeNode* root){
if(!root) return 0;
int left=dfs(root->left);
int right=dfs(root->right);
d=max(d,left+right);
return max(left,right)+1;
}
};