#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <math.h>
#include "cuda_runtime.h"
#include "device_launch_parameters.h"
#include "cublas_v2.h"
#define M 512
#define K 512
#define N 512
#define BLOCK_SIZE 32 //block size ,each thread to calucate each bloc
void initial(float *array, int size)
{
for (int i = 0; i < size; i++)
{
array[i] = (float)(rand() % 10 + 1);
}
}
void printMatrix(float *array, int row, int col)
{
float *p = array;
for (int y = 0; y < row; y++)
{
for (int x = 0; x < col; x++)
{
printf("%10lf", p[x]);
}
p = p + col;
printf("\n");
}
return;
}
void multiplicateMatrixOnHost(float *array_A, float *array_B, float *array_C, int M_p, int K_p, int N_p)
{
for (int i = 0; i < M_p; i++)
{
for (int j = 0; j < N_p; j++)
{
float sum = 0;
for (int k = 0; k < K_p; k++)
{
sum += array_A[i*K_p + k] * array_B[k*N_p + j];
}
array_C[i*N_p + j] = sum;
}
}
}
__global__ void multiplicateMatrixOnDevice(float *array_A, float *array_B, float *array_C, int M_p, int K_p, int N_p)
{
int ix = threadIdx.x + blockDim.x*blockIdx.x;//row number
int iy = threadIdx.y + blockDim.y*blockIdx.y;//col number
if (ix < N_p && iy < M_p)
{
float sum = 0;
for (int k = 0; k < K_p; k++)
{
sum += array_A[iy*K_p + k] * array_B[k*N_p + ix];
}
array_C[iy*N_p + ix] = sum;
}
}
// Compute C = A * B
__global__ void matrixMultiplyShared(float *A, float *B, float *C,
int numARows, int numAColumns, int numBRows, int numBColumns, int numCRows, int numCColumns)
{
//@@ Insert code to implement matrix multiplication here
//@@ You have to use shared memory for this MP
__shared__ float sharedM[BLOCK_SIZE][BLOCK_SIZE];
__shared__ float sharedN[BLOCK_SIZE][BLOCK_SIZE];
int bx = blockIdx.x;
int by = blockIdx.y;
int tx = threadIdx.x;
int ty = threadIdx.y;
int row = by * BLOCK_SIZE + ty;
int col = bx * BLOCK_SIZE + tx;
float Csub = 0.0;
for (int i = 0; i < (int)(ceil((float)numAColumns / BLOCK_SIZE)); i++)
{
if (i*BLOCK_SIZE + tx < numAColumns && row < numARows)
sharedM[ty][tx] = A[row*numAColumns + i * BLOCK_SIZE + tx];
else
sharedM[ty][tx] = 0.0;
if (i*BLOCK_SIZE + ty < numBRows && col < numBColumns)
sharedN[ty][tx] = B[(i*BLOCK_SIZE + ty)*numBColumns + col];
else
sharedN[ty][tx] = 0.0;
__syncthreads();
for (int j = 0; j < BLOCK_SIZE; j++)
Csub += sharedM[ty][j] * sharedN[j][tx];
__syncthreads();
}
if (row < numCRows && col < numCColumns)
C[row*numCColumns + col] = Csub;
}
int main(int argc, char **argv)
{
clock_t start = 0, finish = 0;
float time;
int Axy = M * K;
int Bxy = K * N;
int Cxy = M * N;
float *h_A, *h_B, *hostRef, *deviceRef;
h_A = (float*)malloc(Axy * sizeof(float));
h_B = (float*)malloc(Bxy * sizeof(float));
int nBytes = M * N * sizeof(float);
hostRef = (float*)malloc(Cxy * sizeof(float));
deviceRef = (float*)malloc(Cxy * sizeof(float));
initial(h_A, Axy);
initial(h_B, Bxy);
start = clock();
multiplicateMatrixOnHost(h_A, h_B, hostRef, M, K, N);
finish = clock();
time = (float)(finish - start) / CLOCKS_PER_SEC;
printf("\n");
printf("------------------------------------------------------------------------------------\n");
printf("Computing matrix product using multiplicateMatrixOnHost \n");
printf("------------------------------------------------------------------------------------\n");
printf("Matrix_hostRef: (%d×%d) CPU运行时间为:%lfs\n", M, N, time);
float *d_A, *d_B, *d_C;
cudaMalloc((void**)&d_A, Axy * sizeof(float));
cudaMalloc((void**)&d_B, Bxy * sizeof(float));
cudaMalloc((void**)&d_C, Cxy * sizeof(float));
cudaMemcpy(d_A, h_A, Axy * sizeof(float), cudaMemcpyHostToDevice);
cudaMemcpy(d_B, h_B, Bxy * sizeof(float), cudaMemcpyHostToDevice);
printf("\n\n");
printf("------------------------------------------------------------------------------------\n");
printf("Computing matrix product using multiplicateMatrixOnDevice \n");
printf("------------------------------------------------------------------------------------\n");
int dimx = 2;
int dimy = 2;
dim3 block(dimx, dimy);
dim3 grid((M + block.x - 1) / block.x, (N + block.y - 1) / block.y);
cudaEvent_t gpustart, gpustop;
float elapsedTime = 0.0;
cudaEventCreate(&gpustart);
cudaEventCreate(&gpustop);
cudaEventRecord(gpustart, 0);
multiplicateMatrixOnDevice<<<grid,block>>> (d_A, d_B, d_C, M, K, N);
cudaDeviceSynchronize();
cudaEventRecord(gpustop, 0);
cudaEventSynchronize(gpustop);
cudaEventElapsedTime(&elapsedTime, gpustart, gpustop);
cudaEventDestroy(gpustart);
cudaEventDestroy(gpustop);
cudaMemcpy(deviceRef, d_C, Cxy * sizeof(float), cudaMemcpyDeviceToHost);
printf("Matrix_deviceRef: (%d×%d) <<<(%d,%d),(%d,%d)>>> GPU运行时间为:%fs\n", M, N, grid.x, grid.y, block.x, block.y, elapsedTime / 1000);
elapsedTime = 0.0;
cudaEventCreate(&gpustart);
cudaEventCreate(&gpustop);
cudaEventRecord(gpustart, 0);
matrixMultiplyShared << < grid, block >> > (d_A, d_B, d_C, M, K, K, N, M, N);
cudaDeviceSynchronize();
cudaEventRecord(gpustop, 0);
cudaEventSynchronize(gpustop);
cudaEventElapsedTime(&elapsedTime, gpustart, gpustop);
cudaEventDestroy(gpustart);
cudaEventDestroy(gpustop);
cudaMemcpy(deviceRef, d_C, Cxy * sizeof(float), cudaMemcpyDeviceToHost);
printf("Matrix_deviceRef: (%d×%d) <<<(%d,%d),(%d,%d)>>> GPU运行时间为:%fs\n", M, N, grid.x, grid.y, block.x, block.y, elapsedTime / 1000);
cublasStatus_t status;
cublasHandle_t handle;
cublasCreate(&handle);
elapsedTime = 0.0;
cudaEventCreate(&gpustart);
cudaEventCreate(&gpustop);
cudaEventRecord(gpustart, 0);
float a = 1, b = 0;
cublasSgemm(
handle,
CUBLAS_OP_T, //矩阵A的属性参数,转置,按行优先
CUBLAS_OP_T, //矩阵B的属性参数,转置,按行优先
M, //矩阵A、C的行数
N, //矩阵B、C的列数
K, //A的列数,B的行数,此处也可为B_ROW,一样的
&a, //alpha的值
d_A, //左矩阵,为A
K, //A的leading dimension,此时选择转置,按行优先,则leading dimension为A的列数
d_B, //右矩阵,为B
N, //B的leading dimension,此时选择转置,按行优先,则leading dimension为B的列数
&b, //beta的值
d_C, //结果矩阵C
M //C的leading dimension,C矩阵一定按列优先,则leading dimension为C的行数
);
cudaMemcpy(deviceRef, d_C, Cxy * sizeof(float), cudaMemcpyDeviceToHost);
cudaDeviceSynchronize();
cudaEventRecord(gpustop, 0);
cudaEventSynchronize(gpustop);
cudaEventElapsedTime(&elapsedTime, gpustart, gpustop);
cudaEventDestroy(gpustart);
cudaEventDestroy(gpustop);
printf("Matrix_deviceRef: (%d×%d) <<<(%d,%d),(%d,%d)>>> GPU运行时间为:%fs\n", M, N, grid.x, grid.y, block.x, block.y, elapsedTime / 1000);
cudaFree(d_A);
cudaFree(d_B);
cudaFree(d_C);
free(h_A);
free(h_B);
free(hostRef);
free(deviceRef);
cudaDeviceReset();
return (0);
}
运行结果:
------------------------------------------------------------------------------------
Computing matrix product using multiplicateMatrixOnHost
------------------------------------------------------------------------------------
Matrix_hostRef: (512×512) CPU运行时间为:0.065000s
------------------------------------------------------------------------------------
Computing matrix product using multiplicateMatrixOnDevice
------------------------------------------------------------------------------------
Matrix_deviceRef: (512×512) <<<(256,256),(2,2)>>> GPU运行时间为:0.002266s
Matrix_deviceRef: (512×512) <<<(256,256),(2,2)>>> GPU运行时间为:0.001658s
Matrix_deviceRef: (512×512) <<<(256,256),(2,2)>>> GPU运行时间为:0.000205s