2.5 习题分析

文章探讨了通过收敛阶定义分析迭代方法的收敛速度,以简单迭代法和牛顿迭代法为例,解释了如何利用拉格朗日中值定理判断收敛性。牛顿法被证明具有线性收敛性质,而艾特肯算法用于加速迭代求解特定方程的根。
摘要由CSDN通过智能技术生成

  

类型一、 通过收敛阶的定义分析迭代方法的收敛速度

例6 分析简单迭代法与牛顿迭代法的收敛速度

我的答案:

一、信息

1.分析简单迭代

2.分析牛顿迭代

3.二者的收敛速度

二、分析

条件1和条件2:告诉我此次分析的目标

条件3告诉我分析的方向即为收敛速度

三、思考

疑问:

1.怎么判断或者分析二者的收敛速度呢?

解答:
通过2.5中的收敛阶的定义(传送门:*2.5 迭代法的收敛阶与加速收敛方法

我们不难看出我们得通过这个定义来判定它们的收敛性,那么第一步就是分别求它的分子分母然后·作比值。

2.怎么分子分母联系起来然后相互约分呢?

解答:

迭代法我们通过迭代公式先把分子化为迭代式的格式我称之为回溯或者现回原形思想

这样我们就构建起了与前一次迭代的量的关系,随后我们通过观察我们想把它从迭代公式里拿出来这样我们通过寻找已有的数学工具发现通过拉格朗日中值定理可以完美适配这个工作。(拉格朗日中值定理不熟悉的同学可以传送到这里看一下:3.1 微分中值定理)这样我们就通过构建二者的等式关系(即桥梁)来实现约分的做法。(启发:这里告诉我们如果要实现两个关系式子的约分可以通过构建二者等式关系来入手,有些过程可能需要数学工具

3.牛顿迭代法最后约分后剩下了什么

解答:最后剩下了g(ξ)的导数的绝对值即为常数,即线性收敛。

4.那么牛顿迭代法的的收敛阶又该怎么求呢?
思路:

是否还能用先去先前的思路不能因为我们不妨假设一下如果能实现那么

按步骤来;

我们发现第一步就已经转换不了后面

 因此我决定另辟蹊径尝试通过定理6来解决这个问题:

首先看它的各阶导数是否连续:如果该点的极限等于函数值那么他就连续或者通过另一个思路普通初等函数就是连续函数(如果不熟悉函数连续性判断的可以传送到这里:1.8 函数的连续与间断

通过定理6不难看出牛顿求单根至少是二阶收敛的

四、过程

类型二、加速迭代的艾特肯算法 

用迭代法求方程f(x)=x-2^(-x)=0在区间[0,1]内根x*的近似值,精确到|x(k+1)-x(k)|<10^(-4)

直接带公式就完了。

 

 

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

夏驰和徐策

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值