半群与群简介

半群与单子

半群的基本概念

定义1.半群(semigrop)

( X , ∗ ) (X, \ast ) (X,)是代数系统, ∗ \ast 是X上的二元运算。若 ∗ \ast 运算满足
结合律,则称 ( X , ∗ ) (X, \ast ) (X,)为半群。

  • 半群就是具有结合律的代数系统;
  • 验证半群的要点是验证运算的
    (1)封闭性;(2)结合律

定义2.单子(monoid)

( X , ∗ ) (X, \ast ) (X,)是半群

  1. ∗ \ast 运算满足交换律,则称 ( X , ∗ ) (X , \ast ) (X)是交换半群。
  2. 若X关于 ∗ \ast 运算有幺元,则称 ( X , ∗ ) (X , \ast ) (X)是含幺半群或者单子。
  3. ∗ \ast 运算满足交换律同时X关于 ∗ \ast 运算又有幺元,则称 ( X , ∗ ) (X , \ast ) (X)是交换
    含幺半群或交换单子

定义3.元素的乘幂

( X , ∗ ) (X, \ast ) (X,)是代数系统, ∗ \ast 是X上的二元运算。X 中元素的乘幂定义如下:
∀ x ∈ X x 1 = x x m + 1 = x m ∗ x ( m ∈ N ) \forall x \in X\\ x^1=x \\ x^{m+1}=x^m \ast x(m \in N) xXx1=xxm+1=xmx(mN)

定理1. 指数律

( X , ∗ ) (X, \ast ) (X,)是半群。任取 x ∈ X , ∀ m , n ∈ N x \in X,\forall m,n \in N xX,m,nN
x m ∗ x n = x m + n = x n ∗ x m ( x m ) n = x m n = ( x n ) m x^m \ast x^n=x^{m+n}=x^n \ast x^m \\ (x^m)^n=x^{mn}=(x^n)^m xmxn=xm+n=xnxm(xm)n=xmn=(xn)m

定义4.循环半群(cyclic semigroup)

( X , ∗ ) (X, \ast ) (X,)是半群。若存在着元素 x 0 ∈ X x_0 \in X x0X,使得
( ∀ x ∈ X ) ( ∃ n ∈ N ) ( x = x 0 n ) (\forall x \in X)(\exists n \in N)(x=x_0^n) (xX)(nN)(x=x0n)
则称 ( X , ∗ ) (X, \ast ) (X,)为循环半群;同时称 x 0 x_0 x0是该循环半群的生成元(generating element)。

定理2. 循环半群一定是交换半群。

定义5.子半群(sub-semigroup)

( X , ∗ ) (X, \ast ) (X,)是半群, S ⊆ X S\subseteq X SX S ≠ ∅ S\ne \varnothing S=。若 ( S , ∗ ) (S, \ast ) (S) ( X , ∗ ) (X, \ast ) (X)的子代数系统,并且 ( S , ∗ ) (S, \ast ) (S)也构成半群,则称 ( S , ∗ ) (S, \ast ) (S) ( X , ∗ ) (X, \ast ) (X)的子半群。

  • 子半群的概念是子代数系统概念在半群这种代数系统中的具体体现。
  • 由本章§1的定理3知,若代数系统中的二元运算满足结合律,则子代数系统中的二元运算也满足结合律,因此半群的子代数系统就是这个半群的子半群。
  • 因此,验证子半群与验证子代数系统一样,必须验证条件:
    1. S ⊆ X S\subseteq X SX
    2. S ≠ ∅ S\ne \varnothing S=
    3. 封闭性

群的基本概念

定义1.群(group)

〈 G , ∗ 〉 〈G, \ast 〉 G,是含幺半群。若G中每个元素都有逆元,即
∀ g ( g ∈ G    ⟹    g − 1 ∈ G ) \forall g(g \in G \implies g^{-1} \in G) g(gGg1G),则称 〈 G , ∗ 〉 〈G, \ast 〉 G,为群

  • 群就是每个元素都有逆元的含幺半群;
  • 验证一个代数系统是群,必须验证以下四点:
    (1)封闭性; (2)结合律; (3)有幺元; (4)有逆元。

定义2.交换群(Abel群 加群)。

〈 G , ∗ 〉 〈G, \ast 〉 G,是群。若 ∗ \ast 运算满足交换律,则称 〈 G , ∗ 〉 〈G, \ast 〉 G,是交换群。

定义3.群的阶(rank)

〈 G , ∗ 〉 〈G, \ast 〉 G,是群。称G的势(基数)为群 〈 G , ∗ 〉 〈G, \ast 〉 G,的阶

  • 群的阶反映群的大小;
  • 由定义3知有限群的阶就是G中元素的个数 ;无限群的阶是G的势;群
    的阶统一记为|G|

定理1 逆元唯一无零元

〈 G , ∗ 〉 〈G, \ast 〉 G,是群, ∣ G ∣ ⩾ 2 |G|\geqslant 2 G2。则

  1. G中每个元素的逆元是唯一的;
  2. G中无零元。

定理2 反身律鞋袜律

〈 G , ∗ 〉 〈G, \ast 〉 G,是群,则 ∀ a , b ∈ G \forall a,b \in G a,bG,有

  1. 反身律: ( a − 1 ) − 1 = a (a^{-1})^{-1}=a (a1)1=a
  2. 鞋袜律: ( a ∗ b ) − 1 = b − 1 ∗ a − 1 (a \ast b)^{-1}=b^{-1} \ast a^{-1} (ab)1=b1a1

定理3 消去律

〈 G , ∗ 〉 〈G, \ast 〉 G,是群,则满足消去律
∀ x , y , z ∈ G \forall x,y,z \in G x,y,zG
x ∗ y = x ∗ z    ⟹    y = z x \ast y=x \ast z\implies y=z xy=xzy=z

定理4

在有限群 〈 G , ∗ 〉 ( ∣ G ∣ = n ) 〈G, \ast 〉(|G|=n) G,(G=n) ∗ \ast 运算的运算表中,每一
行(每一列)都与G中元素的自然顺序构成一个置换(双射)。即
每个元素在每行(列)必出现一次且只出现一次。

因此n阶有限群的运算表是由G中元素的 (n个行或n个列所形成的)n个置换所构成的。这个性质来源于群中每个元素都有逆元

定义4.元素的乘幂

〈 G , ∗ 〉 〈G, \ast 〉 G,是群。G中元素乘幂的定义在半群定义的基础
上,增补如下:
∀ x ∈ G x 0 = e ; x − n = ( x − 1 ) n ( ∀ n ∈ N ) \forall x \in G \\ x^0=e;\\ x^{-n}=(x^{-1})^n(\forall n \in N) xGx0=e;xn=(x1)n(nN)

定义5.元素的阶(rank)

〈 G , ∗ 〉 〈G, \ast 〉 G,是群。 ∀ g ∈ G \forall g \in G gG
k = m i n { m : m ∈ N ∣ { 0 } ∧ g m = e } k=min\{m:m\in N | \{0\} \land g^m=e \} k=min{m:mN{0}gm=e}为元素g的阶,若这样的k不存在,则称g的阶为无穷

-元素g的阶k是使 g m = e g^m=e gme成立的最小正整数;
-由于元素的自乘幂是一次一次乘的,因此这个无穷只能是可数无穷;

  • 由定义5可知,么元是群中唯一的一个一阶元素;
  • 群的阶和群中元素的阶这样两个阶的概念,这是两个根本不同的概念。

定理5

〈 G , ∗ 〉 〈G, \ast 〉 G,是群。 ∀ g ∈ G \forall g \in G gG

  1. 若g的阶为n,则 g 1 , g 2 . . . g n ( = e ) g^1,g^2...g^n(=e) g1,g2...gn(=e)互不相同;
  2. 若g的阶为无穷,则 g 0 ( = e ) , g 1 , g 2 . . . g n . . . g^0(=e),g^1,g^2...g^n... g0(=e),g1,g2...gn...互不相同。

定理6

〈 G , ∗ 〉 〈G, \ast 〉 G,是群。 ∀ g ∈ G , g 与 g − 1 \forall g \in G,g与g^{-1} gG,gg1有相同的阶。

定理7

〈 G , ∗ 〉 〈G, \ast 〉 G,是群。 ∀ g ∈ G \forall g \in G gG

  1. 若g的阶有限,设其为k,从而 g k = e g^k=e gk=e。则
    1. ∀ m ∈ N , g m = e    ⟺    k ∣ m \forall m \in N,g^m=e \iff k|m mN,gm=ekm(k整除m,即 m = n ∗ k m=n\ast k m=nk)
    2. ∀ m , n ∈ N , g m = g n    ⟺    k ∣ m − n \forall m,n \in N,g^m=g^n \iff k|m-n m,nN,gm=gnkmn
  2. 若g的阶无限,则 ∀ m , n ∈ N , g m = g n    ⟹    m = n \forall m,n \in N,g^m=g^n \implies m=n m,nN,gm=gnm=n

定理8

有限群中每个元素的阶都是有限的。设 〈 G , ∗ 〉 〈G, \ast 〉 G,是有限
群, ∣ G ∣ = n |G|=n Gn,则G中每个元素的阶 ⩽ n \leqslant n n

循环群

定义6.循环群(cyclic group)

〈 G , ∗ 〉 〈G, \ast 〉 G,是群。 ∃ g 0 ∈ G \exists g_0 \in G g0G,使得
( ∀ g ∈ G ) ( ∃ n ∈ I ) ( g = g 0 n ) (\forall g \in G)(\exists n \in I)(g=g_0^n) (gG)(nI)(g=g0n)
则称 〈 G , ∗ 〉 〈G, \ast 〉 G,为循环群;同时称 g 0 g_0 g0是该循环群的生成元(generating element)。并且将 〈 G , ∗ 〉 〈G, \ast 〉 G,记作 ( g 0 ) (g_0) (g0)

定理9

〈 G , ∗ 〉 〈G, \ast 〉 G,为循环群,|G|=n 。那么
1. g 0 g_0 g0是生成元    ⟺    g 0 − 1 \iff g^{-1}_0 g01是生成元 ;
2. g 0 g_0 g0是生成元    ⟺    g 0 \iff g_0 g0的阶是n 。

定理10

〈 G , ∗ 〉 〈G, \ast 〉 G,为循环群, g 0 g_0 g0是生成元

  1. g 0 g_0 g0的阶为m,则 〈 G , ∗ 〉 〈G, \ast 〉 G,与〈Nm, +m〉 同构;
  2. g 0 g_0 g0的阶为无穷,则 〈 G , ∗ 〉 〈G, \ast 〉 G,与 〈I,+〉同构;

定理11. 循环群一定是交换群。

置换群( * )

定义7.置换群(permutation group)

设所有n次置换构成的集合为 S n , A ⊆ S n , A ≠ ∅ , ◇ S_n ,A\subseteq S_n,A \ne \varnothing,◇ SnASn,A=,是置换的合成运算,若 〈 A , ◇〉 〈A,◇〉 A,构成群,则称 〈 A , ◇〉 〈A, ◇〉 A,为一(n次)置换群。

定理12

n个元素的非空集合X上的所有n次置换构成的集合 S n S_n Sn,在置换的合成运算◇下构成一置换〈Sn,◇〉。 称为n次对称群(group of symmetry),简记为 S n S_n Sn

定理13.(Cayley定理)

任何n阶有限群 〈 G , ∗ 〉 〈G, \ast 〉 G,都与一n次置换群同构。

子群

定义8.子群(subgroup)

若群 〈 G , ∗ 〉 〈G, \ast 〉 G,的子代数系统 〈 S , ∗ 〉 〈S, \ast 〉 S,也是群,则称 〈 S , ∗ 〉 〈S, \ast 〉 S,
〈 G , ∗ 〉 〈G, \ast 〉 G,的子群。

  • 验证子群,除了验证子代数系统的
    ( 1 ) S ⊆ G ; ( 2 ) S ≠ ∅ ( 3 ) ∗ (1)S\subseteq G ; (2)S\ne \varnothing(3) \ast (1)SG(2)S=(3)运算关于S封闭;
    还应该验证
    (4)有幺元(并与群G 中的幺元重合);
    (5)有逆元(并与群G 中的同一元的逆元重合) ;
    而结合律则不须验证,因为根据本章§1定理3可知,遗传。
  • 〈 S , ∗ 〉 〈S, \ast 〉 S,是群 〈 G , ∗ 〉 〈G, \ast 〉 G,的子群, 简记为S< G ;

定理14

〈 G , ∗ 〉 〈G, \ast 〉 G,是群, S ⊆ G , S ≠ ∅ S\subseteq G ,S\ne \varnothing SG,S=,那么
〈 S , ∗ 〉是〈 G , ∗ 〉 〈S, \ast 〉是〈G, \ast 〉 S,〉是〈G,的子群    ⟺    \iff

  1. 封闭性: ∀ a ∀ b ( a ∈ S ∧ b ∈ S    ⟹    a ∗ b ∈ S ) \forall a \forall b(a \in S \land b\in S \implies a \ast b \in S) ab(aSbSabS)
  2. 有逆元: ∀ a ( a ∈ S    ⟹    a − 1 ∈ S ) \forall a(a \in S \implies a^{-1} \in S) a(aSa1S)

定理15

〈 G , ∗ 〉 〈G, \ast 〉 G,是群, S ⊆ G , S ≠ ∅ S\subseteq G ,S\ne \varnothing SG,S=,那么
〈 S , ∗ 〉 〈S, \ast 〉 S, 〈 G , ∗ 〉 〈G, \ast 〉 G,的子群    ⟺    \iff
混合封闭性: ∀ a ∀ b ( a ∈ S ∧ b ∈ S    ⟹    a ∗ b − 1 ∈ S ) \forall a \forall b(a \in S \land b\in S \implies a \ast b^{-1} \in S) ab(aSbSab1S)

定理16

〈 G , ∗ 〉 〈G, \ast 〉 G,是有限群, |G|=n , S ⊆ G , S ≠ ∅ S\subseteq G ,S\ne \varnothing SG,S=,那么
〈 S , ∗ 〉 〈S, \ast 〉 S, 〈 G , ∗ 〉 〈G, \ast 〉 G,的子群    ⟺    \iff
封闭性: ∀ a ∀ b ( a ∈ S ∧ b ∈ S    ⟹    a ∗ b ∈ S ) \forall a \forall b(a \in S \land b\in S \implies a \ast b \in S) ab(aSbSabS)

例20.平凡子群

〈 G , ∗ 〉 〈G, \ast 〉 G,是群,则 〈 e , ∗ 〉 〈{e}, \ast 〉 e, 〈 G , ∗ 〉 〈G, \ast 〉 G, 〈 G , ∗ 〉 〈G, \ast 〉 G,的两个子群。由于每个群都有这样的子群,且这两个子群对问题的研究价值不大。故称这两个子群是 〈 G , ∗ 〉 〈G, \ast 〉 G,的平凡子群。

例21

循环群的子群是循环群。即若 〈 G , ∗ 〉 〈G, \ast 〉 G,是循环群且 〈 S , ∗ 〉 〈S, \ast 〉 S, 〈 G , ∗ 〉 〈G, \ast 〉 G,的子群,则 〈 S , ∗ 〉 〈S, \ast 〉 S,是循环群。

陪集与拉格郎日(Lagrange)定理

定义9.陪集(coset)

〈 G , ∗ 〉 〈 G, \ast 〉 G,是群, 〈 H , ∗ 〉 〈 H, \ast 〉 H, 〈 G , ∗ 〉 〈 G, \ast 〉 G,的子群。对于任何元素 a ∈ G a\in G aG

  1. 由a所确定的H在G中的左陪集(left coset)定义为
    a H = { a ∗ h : h ∈ H } aH=\{a \ast h:h\in H\} aH={ah:hH}
  2. 由a所确定的H在G中的右陪集(right coset)定义为
    H a = { h ∗ a : h ∈ H } Ha=\{h \ast a:h\in H\} Ha={ha:hH}

称元素a是左陪集aH及右陪集Ha的代表元素,简称代表元

定理17

〈 G , ∗ 〉 〈 G, \ast 〉 G,是群, 〈 H , ∗ 〉 〈 H, \ast 〉 H, 〈 G , ∗ 〉 〈 G, \ast 〉 G,的子群。
1. S l = { a H : ∣ a ∈ G } S_l =\{aH:|a\in G\} Sl={aH:aG}
2. S r = { H a : ∣ a ∈ G } S_r =\{Ha:|a\in G\} Sr={Ha:aG}

此表示去掉重复元素

S l , S r S_l,S_r SlSr均是G的划分

定理18

〈 G , ∗ 〉 〈 G, \ast 〉 G,是群, 〈 H , ∗ 〉 〈 H, \ast 〉 H, 〈 G , ∗ 〉 〈 G, \ast 〉 G,的子群。则有:
1. ( ∀ a ∈ G ) ( ∣ a H ∣ = ∣ H ∣ ) (\forall a\in G)(|aH|=|H|) (aG)(aHH)
2. ( ∀ a ∈ G ) ( ∣ H a ∣ = ∣ H ∣ ) (\forall a\in G)(|Ha|=|H|) (aG)(HaH)

定理19

〈 G , ∗ 〉 〈 G, \ast 〉 G,的子群 〈 H , ∗ 〉 〈 H, \ast 〉 H,的不同左陪集的个数等于它的不同右陪集的个数。即
∣ S l ∣ = ∣ S r ∣ |S_l|=|S_r| SlSr

定义10.指数(exponent)

子群 〈 H , ∗ 〉 〈 H, \ast 〉 H,关于群 〈 G , ∗ 〉 〈 G, \ast 〉 G,的不同左陪集(或右陪集)的个数(或势)称为群 〈 G , ∗ 〉 〈 G, \ast 〉 G,关于子群 〈 H , ∗ 〉 〈 H, \ast 〉 H,的指数。记为 ∣ G / H ∣ |G/H| G/H

根据定义有 ∣ G / H ∣ = ∣ S l ∣ = ∣ S r ∣ |G/H| = |S_l|=|S_r| G/H=SlSr

定理20.拉格朗日(Lagrange)定理

〈 H , ∗ 〉 〈 H, \ast 〉 H,是有限群 〈 G , ∗ 〉 〈 G, \ast 〉 G,的子群。则有
∣ G ∣ = ∣ G / H ∣ ⋅ ∣ H ∣ ( 或 ∣ G / H ∣ = ∣ G ∣ / ∣ H ∣ ) |G| =|G/H|\cdot |H| (或 |G/H|=|G|/|H| ) G=G/HH(G/H=G∣/∣H)

  • 推论1.素数阶群的子群只有两个,即两个平凡子群。
  • 推论2.在有限群中,每个元素的阶都是群的阶的因子。
  • 推论3.每个素数阶群都是循环群。
  • 推论4.四阶不同构的群只有两个,一个是4阶循环群,一个是Klein 4-群。
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值