4.1.1 蓝桥杯之动态规划线性DP课后习题建造房屋

该博客介绍了蓝桥杯竞赛中的一道动态规划问题,涉及建造房屋的方案计数。问题要求在有限预算下,确保每条街道至少有一座房屋,求满足条件的方案总数。博主分析了问题,设计了动态规划算法,通过状态转移方程求解,并讨论了可能遇到的内存、时间和精度问题。
摘要由CSDN通过智能技术生成

问题描述

小蓝和小桥是两位年轻的建筑师,他们正在设计一座新的城市。

在这个城市中,有N条街道,每条街道上都有M个位置可以建造房屋(一个位置只能建造一个房屋)。建造一个房屋的费用为1元,小蓝和小桥共有K元的建造预算。

现在,他们想知道,一共有多少种建造方案,满足以下要求:

·在每条街道上,至少建一个房屋。

·建造的总成本不能超过K元。由于方案数可能很大,他们只需要输出答案对10°+7取模的结果。

输入格式

一行三个整数N,M(1≤N,M≤30)和K(1≤K≤N·

M),分别表示街道数、街道的位置数和预算。

输出格式

一个整数,表示满足条件的建造方案数对10⁹+7取模的结果。

样例输入

235

样例输出

8

我的答案:

一、信息

  • 问题描述: 小蓝和小桥需要设计城市中的房屋建造方案。
  • 条件:
    • 城市有 N条街道。<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

夏驰和徐策

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值