第八节 常系数非齐次线性微分方程
本节主要讨论二阶常系数非齐次线性微分方程的求解方法,并简单说明n阶方程的解决方案。二阶常系数非齐次线性微分方程的一般形式是:
𝑦′′+𝑝𝑦′+𝑞𝑦=𝑓(𝑥),y′′+py′+qy=f(x),
其中,𝑝p 和 𝑞q 为常数。
根据第六节的定理3,要求得非齐次方程的通解,需首先找到对应的齐次方程:
𝑦′′+𝑝𝑦′+𝑞𝑦=0,y′′+py′+qy=0,
的通解,然后再找出原非齐次方程的一个特解。第七节已经讨论了二阶常系数齐次线性微分方程的通解求法,所以我们这里将主要关注如何求二阶常系数非齐次线性微分方程的一个特解。
本节将介绍两种常见形式的右端函数 𝑓(𝑥)f(x) 对应的特解 𝑦∗y∗ 的求解方法。我们将使用待定系数法,这种方法无需积分就可以直接求出特解 𝑦∗y∗。这里的两种常见形式为:
- 𝑓(𝑥)=𝑒𝜆𝑥𝑃𝑚(𝑥)f(x)=eλxPm(x):其中,𝜆λ 为常数,𝑃𝑚(𝑥)Pm(x) 为 𝑚m 次多项式。
- 𝑓(𝑥)=𝑒𝜆𝑥[𝑃𝑚(𝑥)cos𝜔𝑥+𝑄𝑚(𝑥)sin𝜔𝑥]f(x)=eλx[Pm(x)cosωx+Qm(x)sinωx]:其中,𝜆λ 和 𝜔ω 为常数,𝜔≠0ω=0,且 𝑃𝑚(𝑥)Pm(x) 和 𝑄𝑚(𝑥)Qm(x) 为 𝑚m 次多项式。
一、形式 𝑓(𝑥)=𝑒𝜆𝑥𝑃𝑚(𝑥)f(x)=eλxPm(x)
我们设方程的特解 𝑦∗=𝑅(𝑥)𝑒𝜆𝑥y∗=R(x)eλx,其中 𝑅(𝑥)R(x) 是一个多项式。将 𝑦∗y∗、𝑦∗′y∗′ 和 𝑦∗′′y∗′′ 代入非齐次方程,并消去指数函数 𝑒𝜆𝑥eλx,我们得到:
𝑅′′(𝑥)+(2𝜆+𝑝)𝑅′(𝑥)+(𝜆2+𝑝𝜆+𝑞)𝑅(𝑥)=𝑃𝑚(𝑥).R′′(x)+(2λ+p)R′(x)+(λ2+pλ+q)R(x)=Pm(x).
我们根据参数 𝜆λ 的不同情况讨论:
-
如果 𝜆λ 不是特征方程的根(即 𝜆2+𝑝𝜆+𝑞≠0λ2+pλ+q=0),则我们可以直接令 𝑅(𝑥)R(x) 为一个与 𝑃𝑚(𝑥)Pm(x) 同次的多项式,然后比较各次幂的系数得到方程组,求解出未知系数。
-
如果 𝜆λ 是特征方程的单根,但 2𝜆+𝑝≠02λ+p=0,此时需令 𝑅(𝑥)=𝑥⋅𝑅𝑚(𝑥)R(x)=x⋅Rm(x),并用类似的方法求解 𝑅𝑚(𝑥)Rm(x) 的系数。
-
如果 𝜆λ 是特征方程的重根(即 𝜆2+𝑝𝜆+𝑞=0λ2+pλ+q=0,且 2𝜆+𝑝=02λ+p=0),我们需令 𝑅(𝑥)=𝑥2⋅𝑅𝑚(𝑥)R(x)=x2⋅Rm(x),然后用同样的方式确定多项式 𝑅𝑚(𝑥)Rm(x) 的系数。
综上所述,如果 𝑓(𝑥)=𝑒𝜆𝑥𝑃𝑚(𝑥)f(x)=eλxPm(x),则二阶常系数非齐次线性微分方程具有形如:
𝑦∗=𝑥𝑘⋅𝑅𝑚(𝑥)⋅𝑒𝜆𝑥,y∗=xk⋅Rm(x)⋅eλx,
的特解,其中 𝑅𝑚(𝑥)Rm(x) 为与 𝑃𝑚(𝑥)Pm(x) 同次的多项式,而 𝑘k 根据 𝜆λ 是否为特征方程的根、单根或重根依次取值为 0、1 或 2。
推广至 n 阶方程
上述结论可以推广到 n 阶常系数非齐次线性微分方程。需要注意的是,此时特征方程中根的重复次数决定了公式中的 𝑘k 值。如果 𝜆λ 不是特征方程的根,则 𝑘=0k=0;如果 𝜆λ 是特征方程的 s 重根,则 𝑘=𝑠k=s。
例1:求微分方程 𝑦′′−2𝑦′−3𝑦=3𝑥+1y′′−2y′−3y=3x+1 的一个特解。
解:
这是一个二阶常系数非齐次线性微分方程,右侧的非齐次项 𝑓(𝑥)=3𝑥+1f(x)=3x+1 可视为 𝑒0𝑥𝑃(𝑥)e0xP(x) 型,其中 𝜆=0λ=0 且 𝑃(𝑥)=3𝑥+1P(x)=3x+1。
对应的齐次方程为:
𝑦′′−2𝑦′−3𝑦=0,y′′−2y′−3y=0,
特征方程为:
𝑟2−2𝑟−3=0,r2−2r−3=0,
解得 𝑟=3r=3 或 𝑟=−1r=−1,因此齐次方程的通解为:
𝑦ℎ=𝐶1𝑒3𝑥+𝐶2𝑒−𝑥.yh=C1e3x+C2e−x.
由于 𝜆=0λ=0 不是特征方程的根,我们设特解为 𝑦∗=𝑏𝑥+𝑐y∗=bx+c。代入原方程:
−2𝑏−3𝑐=3𝑥+1,−2b−3c=3x+1,
比较 𝑥x 的系数和常数项,得到方程组:
−3𝑏=3,−2𝑏−3𝑐=1.−3b−2b−3c=3,=1.
解得 𝑏=−1b=−1,𝑐=−1c=−1,所以特解为:
𝑦∗=−𝑥−1.y∗=−x−1.
例2:求微分方程 𝑦′′−5𝑦′+6𝑦=𝑥𝑒2𝑥y′′−5y′+6y=xe2x 的通解。
解:
所给方程同样是二阶常系数非齐次线性微分方程,右侧的非齐次项 𝑓(𝑥)=𝑥𝑒2𝑥f(x)=xe2x 为 𝑒2𝑥𝑃(𝑥)e2xP(x) 型,其中 𝜆=2λ=2 且 𝑃(𝑥)=𝑥P(x)=x。
对应的齐次方程为:
𝑦′′−5𝑦′+6𝑦=0,y′′−5y′+6y=0,
特征方程为:
𝑟2−5𝑟+6=0,r2−5r+6=0,
解得 𝑟=2r=2 或 𝑟=3r=3,因此齐次方程的通解为:
𝑦ℎ=𝐶1𝑒2𝑥+𝐶2𝑒3𝑥.yh=C1e2x+C2e3x.
由于 𝜆=2λ=2 是特征方程的单根,我们设特解为 𝑦∗=𝑥(𝑏0𝑥+𝑏1)𝑒2𝑥y∗=x(b0x+b1)e2x。代入原方程并整理,比较 𝑥x 的系数,得到方程:
−2𝑏0𝑥+2𝑏1−𝑏1=𝑥,−2b0x+2b1−b1=x,
解得 𝑏0=−1b0=−1,𝑏1=−1b1=−1,所以特解为:
因此,全体解为:
这些例子清楚地展示了待定系数法在求解常系数非齐次线性微分方程中的应用。
在这个例子中,我们将讨论如何使用待定系数法解决含有 𝑒𝜆𝑥[𝑃(𝑥)cos𝜔𝑥+𝑄(𝑥)sin𝜔𝑥]eλx[P(x)cosωx+Q(x)sinωx] 形式的右侧项的二阶常系数非齐次线性微分方程。这种类型的方程可以利用复指数函数的形式来求解,从而简化计算过程。
使用欧拉公式
利用欧拉公式 cos𝜔=𝑒𝑖𝜔+𝑒−𝑖𝜔2cosω=2eiω+e−iω 和 sin𝜔=𝑒𝑖𝜔−𝑒−𝑖𝜔2𝑖sinω=2ieiω−e−iω,可以将 𝑓(𝑥)f(x) 表示为:
这里,𝑃(𝑥)P(x) 和 𝑄(𝑥)Q(x) 是互为共轭的多项式,并且 𝑚=max{𝑙,𝑛}m=max{l,n},其中 𝑙l 和 𝑛n 分别是 𝑃(𝑥)P(x) 和 𝑄(𝑥)Q(x) 的次数。
求解特解
根据之前讨论的方法,我们可以针对每一项 𝑃(𝑥)𝑒(𝜆+𝑖𝜔)𝑥P(x)e(λ+iω)x 和 𝑃(𝑥)𝑒(𝜆−𝑖𝜔)𝑥P(x)e(λ−iω)x 分别求解。设 𝑦1=𝑥𝑘𝑅(𝑥)𝑒(𝜆+𝑖𝜔)𝑥y1=xkR(x)e(λ+iω)x 为其中一个项的特解,那么另一个项的特解 𝑦2y2 将是 𝑦1y1 的共轭,即 𝑦2=𝑥𝑘𝑅(𝑥)𝑒(𝜆−𝑖𝜔)𝑥y2=xkR(x)e(λ−iω)x。
因此,方程的特解可以写为:
这可以简化为实数形式:
其中,𝑅1(𝑥)R1(x) 和 𝑅2(𝑥)R2(x) 分别是 𝑅(𝑥)R(x) 和 𝑅(𝑥)‾R(x) 的实部和虚部。
例3:求微分方程 𝑦′′+𝑦=𝑥cos2𝑥y′′+y=xcos2x 的一个特解。
解:
方程右侧为 𝑓(𝑥)=𝑥cos2𝑥f(x)=xcos2x,这里 𝜆=0λ=0, 𝜔=2ω=2, 𝑃(𝑥)=𝑥P(x)=x, 𝑄(𝑥)=0Q(x)=0。
对应的齐次方程是:
𝑦′′+𝑦=0,y′′+y=0,
特征方程为:
解得 𝑟=𝑖r=i 或 𝑟=−𝑖r=−i,因此 𝜆+𝑖𝜔=2𝑖λ+iω=2i 不是特征方程的根。设特解为:
代入原方程得:
(−3𝑎𝑥−3𝑏+4𝑐)cos2𝑥−(3𝑐𝑥+3𝑑+4𝑎)sin2𝑥=𝑥cos2𝑥.(−3ax−3b+4c)cos2x−(3cx+3d+4a)sin2x=xcos2x.
比较两端同类项的系数,解得:
因此,特解为:
这是应用待定系数法求解具有特定形式非齐次项的微分方程的一个典型例子。
第八节:常系数非齐次线性微分方程
例4:求微分方程 的一个特解
解:
这是一个二阶常系数非齐次线性微分方程,右侧项 𝑓(𝑥)f(x) 属于 𝑒𝜆𝑥[𝑃(𝑥)cos𝜔𝑥+𝑄(𝑥)sin𝜔𝑥]eλx[P(x)cosωx+Q(x)sinωx] 形式(其中 𝜆=1λ=1,𝜔=2ω=2,𝑃(𝑥)=1P(x)=1,𝑄(𝑥)=0Q(x)=0)。
该方程的齐次部分的特征方程为:
𝑟2−1=0,r2−1=0,
解得:
𝑟=±1.r=±1.
由于 𝜆+𝑖𝜔=1+2𝑖λ+iω=1+2i 不是齐次方程的特征方程的根,因此我们设特解为:
𝑦∗=𝑒𝑥(𝑎cos2𝑥+𝑏sin2𝑥).y∗=ex(acos2x+bsin2x).
计算其一阶导数和二阶导数:
𝑦∗′=𝑒𝑥[(𝑎+2𝑏)cos2𝑥+(−2𝑎+𝑏)sin2𝑥],y∗′=ex[(a+2b)cos2x+(−2a+b)sin2x],
𝑦∗′′=𝑒𝑥[(−3𝑎+4𝑏)cos2𝑥+(−4𝑎−3𝑏)sin2𝑥].y∗′′=ex[(−3a+4b)cos2x+(−4a−3b)sin2x].
将这些导数代入原方程 𝑦′′−𝑦=𝑒𝑥cos2𝑥y′′−y=excos2x,得到:
𝑒𝑥[(−3𝑎+4𝑏)cos2𝑥+(−4𝑎−3𝑏)sin2𝑥]−𝑒𝑥(𝑎cos2𝑥+𝑏sin2𝑥)=𝑒𝑥cos2𝑥.ex[(−3a+4b)cos2x+(−4a−3b)sin2x]−ex(acos2x+bsin2x)=excos2x.
整理得到:
𝑒𝑥[(−4𝑎+4𝑏)cos2𝑥+(−4𝑎−4𝑏)sin2𝑥]=𝑒𝑥cos2𝑥.ex[(−4a+4b)cos2x+(−4a−4b)sin2x]=excos2x.
比较两边同类项的系数,得出方程组:
−4𝑎+4𝑏=1,−4𝑎−4𝑏=0.−4a+4b−4a−4b=1,=0.
解得:
𝑎=18,𝑏=18.a=81,b=81.
因此,特解为:
𝑦∗=𝑒𝑥(18cos2𝑥+18sin2𝑥).y∗=ex(81cos2x+81sin2x).
例5:求解物体受弹性恢复力和垂直干扰力作用的运动方程
解:
我们将求解无阻尼强迫振动的方程:
𝑥′′+𝑘2𝑥=ℎsin𝑝𝑡.(8−6)x′′+k2x=hsinpt.(8−6)
方程的齐次形式(即无阻尼自由振动方程)为:
𝑥′′+𝑘2𝑥=0.(8−7)x′′+k2x=0.(8−7)
其特征方程为:
𝑟2+𝑘2=0,r2+k2=0,
解得:
𝑟=±𝑘𝑖.r=±ki.
因此,齐次方程的通解为:
𝑥ℎ=𝐶1cos𝑘𝑡+𝐶2sin𝑘𝑡.xh=C1coskt+C2sinkt.
令 𝐶1=𝐴sin𝜙C1=Asinϕ 和 𝐶2=𝐴cos𝜙C2=Acosϕ,则通解可以写为:
𝑥ℎ=𝐴sin(𝑘𝑡+𝜙).xh=Asin(kt+ϕ).
方程 (8-6) 的右侧项 𝑓(𝑡)=ℎsin𝑝𝑡f(t)=hsinpt 属于 𝑒𝜆𝑡[𝑃(𝑡)cos𝜔𝑡+𝑄(𝑡)sin𝜔𝑡]eλt[P(t)cosωt+Q(t)sinωt] 形式(其中 𝜆=0λ=0,𝜔=𝑝ω=p,𝑃(𝑡)=0P(t)=0,𝑄(𝑡)=ℎQ(t)=h)。我们将分别考虑 𝑝≠𝑘p=k 和 𝑝=𝑘p=k 两种情况。
-
情况 1:𝑝≠𝑘p=k
由于 𝜆+𝑖𝜔=±𝑝𝑖λ+iω=±pi 不是特征方程的根,我们可以设特解为:
𝑥∗=𝑎1cos𝑝𝑡+𝑏1sin𝑝𝑡.x∗=a1cospt+b1sinpt.
代入方程 (8-6) 中,求解得到:
𝑎1=0,𝑏1=ℎ𝑘2−𝑝2.a1=0,b1=k2−p2h.
因此,特解为:
𝑥∗=ℎ𝑘2−𝑝2sin𝑝𝑡.x∗=k2−p2hsinpt.
整个方程 (8-6) 的通解为:
𝑥=𝑥ℎ+𝑥∗=𝐴sin(𝑘𝑡+𝜙)+ℎ𝑘2−𝑝2sin𝑝𝑡.x=xh+x∗=Asin(kt+ϕ)+k2−p2hsinpt.
该公式表示物体的运动由两个部分组成,第一部分表示自由振动,第二部分表示强迫振动。强迫振动的频率与干扰力的频率 𝑝p 相同。
-
情况 2:𝑝=𝑘p=k
由于 𝜆+𝑖𝜔=±𝑝𝑖λ+iω=±pi 是特征方程的根,我们设特解为:
𝑥∗=𝑡(𝑎1cos𝑘𝑡+𝑏1sin𝑘𝑡).x∗=t(a1coskt+b1sinkt).
代入方程 (8-6) 中,求解得到:
𝑎1=0,𝑏1=ℎ2𝑘.a1=0,b1=2kh.
因此,特解为:
𝑥∗=ℎ2𝑘𝑡sin𝑘𝑡.x∗=2khtsinkt.
整个方程的通解为:
𝑥=𝑥ℎ+𝑥∗=𝐴sin(𝑘𝑡+𝜙)+ℎ2𝑘𝑡sin𝑘𝑡.x=xh+x∗=Asin(kt+ϕ)+2khtsinkt.
上式中,强迫振动的振幅随时间 𝑡t 增加而不断增大,这种现象被称为共振现象。为避免共振,应尽量避免干扰力的频率与系统的固有频率接近。