8. 常系数非齐次线性微分方程

8. 常系数非齐次线性微分方程

由前面所学可以知道非齐次线性方程的通解,为其对应的齐次线性方程的通解与它本身的一个特解之和。

其中,齐次方程 y ′ ′ + p y ′ + q = 0 y^{''}+py^{'}+q=0 y′′+py+q=0 的通解我们已经知道如何去求,那么现在的问题就在于如何去解非齐次方程 y ′ ′ + p y ′ + q = f ( x ) y^{''}+py^{'}+q=f(x) y′′+py+q=f(x) 的一个特解。

课本上只介绍了 f ( x ) f(x) f(x) 取两种常见形式时求特解 y ∗ y^{*} y 的方法,我们在这里依旧遵从课本,介绍这两种:

① f ( x ) = e λ x P m ( x ) ① f(x)=e^{\lambda x}P_m(x) f(x)=eλxPm(x),其中 λ \lambda λ 是常数, P m ( x ) P_m(x) Pm(x) x x x 的一个 m m m 次多项式:

P m ( x ) = a 0 x m + a 1 x m − 1 + ⋯ + a m P_m(x)=a_0x^m+a_1x^{m-1}+\dots+a_m Pm(x)=a0xm+a1xm1++am

② f ( x ) = e λ x [ P l ( x ) c o s ω x + Q n ( x ) s i n ω x ] ② f(x)=e^{\lambda x}[P_l(x)cos\omega x+Q_n(x)sin \omega x] f(x)=eλx[Pl(x)cosωx+Qn(x)sinωx] ,其中 λ , ω \lambda,\omega λ,ω 是常数,且 ω ≠ 0. \omega ≠ 0 . ω=0.

P l ( x ) 与 Q n ( x ) P_l(x) 与 Q_n(x) Pl(x)Qn(x) 分别是关于 x x x l l l 次, n n n 次多项式,注意二者不能同时取 0 0 0

下面分别介绍二者的解法: 待定系数法 ‾ \underline{待定系数法} 待定系数法 (即不用积分就可以求得 y ∗ y^{*} y

8.1 f ( x ) = e λ x P m ( x ) f(x)=e^{\lambda x}P_m(x) f(x)=eλxPm(x)

现有一函数 y = e λ x R ( x ) y=e^{\lambda x}R(x) y=eλxR(x) ,其中 R ( x ) R(x) R(x) 是某个多项式,由于 y = e λ x R ( x ) y=e^{\lambda x}R(x) y=eλxR(x)的导数仍然为 e λ x e^{\lambda x} eλx与多项式函数的乘积,故我们不妨设 y ∗ = e λ x R ( x ) y^{*}=e^{\lambda x}R(x) y=eλxR(x)为非齐次方程 y ′ ′ + p y ′ + q = e λ x P m ( x ) y^{''}+py^{'}+q=e^{\lambda x}P_m(x) y′′+py+q=eλxPm(x)的一个特解。

此时 y ∗ = R ( x ) e λ x , y ∗ ′ = e λ x [ R ′ ( x ) + λ R ( x ) ] , y ∗ ′ ′ = e λ x ( λ 2 R ( x ) + 2 λ R ′ ( x ) + R ′ ′ ( x ) ) y^{*}=R(x)e^{\lambda x},y^{*'}=e^{\lambda x}[R^{'}(x)+\lambda R(x)],y^{*''}=e^{\lambda x}(\lambda ^2 R(x)+2 \lambda R^{'}(x)+R^{''}(x)) y=R(x)eλx,y=eλx[R(x)+λR(x)],y′′=eλx(λ2R(x)+2λR(x)+R′′(x))

代入原方程,经过整理得到 R ′ ′ ( x ) + ( 2 λ + p ) R ′ ( x ) + ( λ 2 + p λ + q ) R ( x ) = P m ( x ) R^{''}(x)+(2\lambda +p)R^{'}(x)+(\lambda ^2 +p \lambda +q)R(x)=P_m(x) R′′(x)+(2λ+p)R(x)+(λ2+pλ+q)R(x)=Pm(x)

此时方程中含有两个系数: 2 λ + p 与 λ 2 + p λ + q 2 \lambda +p 与 \lambda ^2 +p \lambda +q 2λ+pλ2+pλ+q

我们需要讨论这两个系数与 0 0 0 的关系而进行进一步的总结:

8.1.1 若 λ 2 + p λ + q ≠ 0 \lambda ^2 +p \lambda +q \neq 0 λ2+pλ+q=0 ,即 λ \lambda λ 不是原方程的特征方程 r 2 + p r + q = 0 r^2+pr+q=0 r2+pr+q=0 的根。

R ′ ′ ( x ) + ( 2 λ + p ) R ′ ( x ) + ( λ 2 + p λ + q ) R ( x ) = P m ( x ) R^{''}(x)+(2\lambda +p)R^{'}(x)+(\lambda ^2 +p \lambda +q)R(x)=P_m(x) R′′(x)+(2λ+p)R(x)+(λ2+pλ+q)R(x)=Pm(x)

又因为 P m ( x ) P_m(x) Pm(x) 是一个 m m m 次多项式。

我们要想使方程的左右两端相等,此时可以设 R ( x ) R(x) R(x) 也是一个 m m m 次多项式。

R ( x ) = R m ( x ) = b 0 x m + b 1 x m − 1 + ⋯ + b m R(x)=R_m(x)=b_0x^{m}+b_1x^{m-1}+\dots+b_m R(x)=Rm(x)=b0xm+b1xm1++bm ,此时我们对 R ( x ) R(x) R(x)求导分别得到 R ′ ( x ) R^{'}(x) R(x) R ′ ′ ( x ) R^{''}(x) R′′(x)

代入方程 R ′ ′ ( x ) + ( 2 λ + p ) R ′ ( x ) + ( λ 2 + p λ + q ) R ( x ) = P m ( x ) R^{''}(x)+(2\lambda +p)R^{'}(x)+(\lambda ^2 +p \lambda +q)R(x)=P_m(x) R′′(x)+(2λ+p)R(x)+(λ2+pλ+q)R(x)=Pm(x)

使方程两端 x x x 同次幂的系数相等即可。

8.1.2 若 λ 2 + p λ + q = 0 \lambda ^2 +p \lambda +q = 0 λ2+pλ+q0 ,且 λ \lambda λ 是特征方程 r 2 + p r + q = 0 r^2+pr+q=0 r2+pr+q=0 的单根,也即 p 2 − 4 q > 0 p^2-4q > 0 p24q>0

则二次函数 y = x 2 + p x + q y=x^2+px+q y=x2+px+q 与x轴有两交点,说明 λ \lambda λ与对称轴横坐标不相等,即 2 λ + p ≠ 0 2\lambda+p\neq0 2λ+p=0

这里引用一下百度知道上的一个回答
对于式子 y ′ ′ + p y ′ + q = P m ( x ) e n x y^{''}+py^{'}+q=P_m(x)e^{nx} y′′+py+q=Pm(x)enx
若其特征方程的特征根为 2 , 3 2,3 2,3 .若 n = 2 n=2 n=2 ,那么 2 2 2 是单根,若 n = 3 n=3 n=3 ,则 3 3 3 是单根

那么这时候方程变为 R ′ ′ ( x ) + ( 2 λ + p ) R ′ ( x ) = P m ( x ) R^{''}(x)+(2\lambda+p)R^{'}(x)=P_m(x) R′′(x)+(2λ+p)R(x)=Pm(x)

要使两端相等,则此时 R ′ ( x ) R^{'}(x) R(x) 必须是 m m m 次多项式。

不妨设 R ( x ) = x R m ( x ) R(x)=xR_m(x) R(x)=xRm(x) ,同样我们可以通过比较 x x x 次幂的系数来得到 R ( x ) R(x) R(x)

8.1.3 若 λ 2 + p λ + q = 0 \lambda ^2 +p \lambda +q = 0 λ2+pλ+q0 ,且 λ \lambda λ 是特征方程 r 2 + p r + q = 0 r^2+pr+q=0 r2+pr+q=0 的重根,也即 p 2 − 4 q = 0 p^2-4q = 0 p24q=0

则二次函数 y = x 2 + p x + q y=x^2+px+q y=x2+px+q 与x轴只有一个交点,说明 λ \lambda λ与对称轴横坐标相等,即 2 λ + p = 0 2\lambda+p=0 2λ+p=0

重根,顾名思义就是方程的大于等于两个的相等的实数根。

此处是定义:多项式方程重数大于等于2的根。(出自度娘

那么这个时候方程就变成了 R ′ ′ ( x ) = P m ( x ) R^{''}(x)=P_m(x) R′′(x)=Pm(x)

同8.1.2,为了使方程两端相等,我们就必须使 R ′ ′ ( x ) 为 m R^{''}(x) 为 m R′′(x)m 次多项式。

则令 R ( x ) = x 2 R m ( x ) R(x)=x^2R_m(x) R(x)=x2Rm(x) ,再用同样的方法求系数即可。

8.1.4 总结

通过对上面几个情况的讨论,以及对答案形式的观察,我们不难总结出,对于 f ( x ) = e λ x P m ( x ) f(x)=e^{\lambda x}P_m(x) f(x)=eλxPm(x) 的常系数非齐次微分方程非齐次方程 y ′ ′ + p y ′ + q = e λ x P m ( x ) y^{''}+py^{'}+q=e^{\lambda x}P_m(x) y′′+py+q=eλxPm(x),特解 y ∗ y^{*} y 的形式为 x k R m ( x ) e λ x x^{k}R_m(x)e^{\lambda x} xkRm(x)eλx **,**其中 R m ( x ) R_m(x) Rm(x) 为与 P m ( x ) P_m(x) Pm(x) 一样都是 m m m 次多项式, k k k 按特征方程的根的情况可能取 0 , 1 , 2 0,1,2 0,1,2

(当 λ \lambda λ 不是特征方程的根时取 0 0 0 ,是特征方程的单根时取 1 1 1 ,是重根时则取 2 2 2 )

特征方程的根特解形式
λ 2 + p λ + q ≠ 0 \lambda^2 + p\lambda + q \neq 0 λ2+pλ+q=0 y ∗ = x 0 R m ( x ) e λ x y^{*} = x^{0}R_m(x)e^{\lambda x} y=x0Rm(x)eλx y ∗ ′ ( x ) y^{*'}(x) y(x) y ∗ ′ ′ ( x ) y^{*''}(x) y′′(x) 代入 y ′ ′ + p y ′ + q y^{''}+py^{'}+q y′′+py+q 不会消掉最高次项。
2 λ + p ≠ 0 2\lambda+p\neq0 2λ+p=0取任意值 R m ( x ) = b 0 x m + b 1 x m − 1 + ⋯ + b m R_m(x) = b_0x^m + b_1x^{m-1} + \dots + b_m Rm(x)=b0xm+b1xm1++bm P m ( x ) = b 0 ′ x m + b 1 ′ x m − 1 + ⋯ + b m ′ P_m(x) = b_0'^{}x^m + b_1'x^{m-1} + \dots + b'_m Pm(x)=b0xm+b1xm1++bm
λ 2 + p λ + q = 0 \lambda^2 + p\lambda + q = 0 λ2+pλ+q=0 y ∗ = x R m ( x ) e λ x y^{*} = xR_m(x)e^{\lambda x} y=xRm(x)eλx y ∗ ′ ( x ) y^{*'}(x) y(x) y ∗ ′ ′ ( x ) y^{*''}(x) y′′(x) 代入 y ′ ′ + p y ′ + q y^{''}+py^{'}+q y′′+py+q 只消掉最高次项。
p 2 − 4 q > 0 p^2-4q > 0 p24q>0 2 λ + p ≠ 0 2\lambda+p\neq0 2λ+p=0 R m ( x ) = b 0 x m + b 1 x m − 1 + ⋯ + b m R_m(x) = b_0x^m + b_1x^{m-1} + \dots + b_m Rm(x)=b0xm+b1xm1++bm, P m ( x ) = b 0 ′ x m + b 1 ′ x m − 1 + ⋯ + b m ′ P_m(x) = b_0'^{}x^m + b_1'x^{m-1} + \dots + b'_m Pm(x)=b0xm+b1xm1++bm
λ 2 + p λ + q = 0 \lambda^2 + p\lambda + q = 0 λ2+pλ+q=0 y ∗ = x 2 R m ( x ) e λ x y^{*} = x^2R_m(x)e^{\lambda x} y=x2Rm(x)eλx y ∗ ′ ( x ) y^{*'}(x) y(x) y ∗ ′ ′ ( x ) y^{*''}(x) y′′(x) 代入 y ′ ′ + p y ′ + q y^{''}+py^{'}+q y′′+py+q 消掉最高次和次高次项。
p 2 − 4 q = 0 p^2-4q = 0 p24q=0 2 λ + p = 0 2\lambda+p=0 2λ+p=0 R m ( x ) = b 0 x m + b 1 x m − 1 + ⋯ + b m R_m(x) = b_0x^m + b_1x^{m-1} + \dots + b_m Rm(x)=b0xm+b1xm1++bm, P m ( x ) = b 0 ′ x m + b 1 ′ x m − 1 + ⋯ + b m ′ P_m(x) = b_0'^{}x^m + b_1'x^{m-1} + \dots + b'_m Pm(x)=b0xm+b1xm1++bm
总结: y ∗ = x k R m ( x ) e λ x y^{*} = x^{k}R_m(x)e^{\lambda x} y=xkRm(x)eλx
k = 0 k = 0 k=0 if roots don’t contain λ \lambda λ
k = 1 k = 1 k=1 if roots are single roots of the characteristic equation
k = 2 k = 2 k=2 if roots are repeated roots of the characteristic equation

注意:

此结论依旧可以推广到 n n n 阶的形式,但是注意此时 k k k 是特征方程含 λ \lambda λ 的重复次数。

特征方程的根不含 λ \lambda λ 时, k k k 0 0 0 。其余含 n n n 次,就取 n n n

8.1.5 例题

此处仅给出一个例题来帮助大家体会这个过程。

求微分方程 2 y ′ ′ + y ′ − y = 2 e x 2y^{''}+y^{'}-y=2e^x 2y′′+yy=2ex 的通解。

那么容易发现 λ = 1 , P m ( x ) = 2 \lambda = 1,P_m(x)=2 λ=1,Pm(x)=2

且方程对应的齐次方程为 2 y ′ ′ + y ′ − y = 0 2y^{''}+y^{'}-y=0 2y′′+yy=0 ,特征方程为 2 r 2 + r − 1 = 0 2r^2+r-1=0 2r2+r1=0

它有两个实根 $r_1=-1,r_2=\frac{1}{2} $,可见 λ = 1 \lambda=1 λ=1 并不是特征方程的根。

此时可以得到齐次方程的通解为 Y = C 1 e − x + C 2 e x 2 Y=C_1e^{-x}+C_2e^{\frac{x}{2}} Y=C1ex+C2e2x

这里我们设非齐次方程的特解 y ∗ = x 0 b e x = b ⋅ e x y^{*}=x^0be^x=b\cdot e^x y=x0bex=bex

代入原方程有 2 b e x = 2 e x 2be^x=2e^x 2bex=2ex ,容易求得 b = 1 b=1 b=1

那么 y ∗ = e x y^{*}=e^x y=ex

所以得到微分方程的通解为 y = C 1 e − x + C 2 e x 2 + e x y=C_1e^{-x}+C_2e^{\frac{x}{2}}+e^x y=C1ex+C2e2x+ex

8.2 f ( x ) = e λ x [ P l ( x ) c o s ω x + Q n ( x ) s i n ω x ] f(x)=e^{\lambda x}[P_l(x)cos\omega x+Q_n(x)sin \omega x] f(x)=eλx[Pl(x)cosωx+Qn(x)sinωx]

8.2.1 转化方程

也即求解非齐次方程 y ′ ′ + p y ′ + q = e λ x P l ( x ) c o s ω x + Q n ( x ) s i n ω x y^{''}+py^{'}+q=e^{\lambda x}P_l(x)cos\omega x+Q_n(x)sin \omega x y′′+py+q=eλxPl(x)cosωx+Qn(x)sinωx

上一节我们已经使用过的欧拉公式 e i θ = c o s θ + i s i n θ e^{i\theta}=cos\theta+isin\theta eiθ=cosθ+isinθ 经过变形还有着这样的形式:

c o s θ = 1 2 ( e i θ + e − i θ ) , s i n θ = 1 2 i ( e i θ − e − i θ ) cos\theta=\frac{1}{2}(e^{i\theta}+e^{-i\theta}),sin\theta=\frac{1}{2i}(e^{i\theta}-e^{-i\theta}) cosθ=21(eiθ+eiθ),sinθ=2i1(eiθeiθ)

我们尝试用这两个式子将 f(x) 进行变形:

f ( x ) = e λ x [ P l e ω x i + e − ω x i 2 + Q n e ω x i − e − ω x i 2 i ] = ( P l 2 + Q n 2 i ) e ( λ + ω i ) x + ( P l 2 − Q n 2 i ) e ( λ − ω i ) x f(x)=e^{\lambda x}[P_l\frac{e^{\omega x i}+e^{-\omega x i}}{2}+Q_n\frac{e^{\omega x i-e^{-\omega x i}}}{2i}] =(\frac{P_l}{2}+\frac{Q_n}{2i})e^{(\lambda+\omega i)x}+(\frac{P_l}{2}-\frac{Q_n}{2i})e^{(\lambda-\omega i)x} f(x)=eλx[Pl2eωxi+eωxi+Qn2ieωxieωxi]=(2Pl+2iQn)e(λ+ωi)x+(2Pl2iQn)e(λωi)x

为了提高大家的阅读体验,此处选择同课本一样用 P ( x ) P(x) P(x) P ‾ ( x ) \overline{P}(x) P(x) 来进行代换

即此时 f ( x ) = e ( λ + ω i ) x P ( x ) + P ‾ ( x ) e ( λ − ω i ) x f(x)=e^{(\lambda+\omega i)x}P(x)+\overline{P}(x)e^{(\lambda- \omega i)x} f(x)=e(λ+ωi)xP(x)+P(x)e(λωi)x

至于为什么要用共轭来表示是有原因的:

P ( x ) = P l 2 + Q n 2 i = P l 2 − Q n 2 i P(x)=\frac{P_l}{2}+\frac{Q_n}{2i}=\frac{P_l}{2}-\frac{Q_n}{2}i P(x)=2Pl+2iQn=2Pl2Qni

P ‾ ( x ) = P l 2 − Q n 2 i = P l 2 + Q n 2 i \overline{P}(x)=\frac{P_l}{2}-\frac{Q_n}{2i}=\frac{P_l}{2}+\frac{Q_n}{2}i P(x)=2Pl2iQn=2Pl+2Qni

易见此时 P ( x ) P(x) P(x) P ‾ ( x ) \overline{P}(x) P(x) 时互成共轭的 m m m 次多项式,其中 m = m a x ( l , n ) m=max (l,n) m=max(l,n)

注:由于他们的对应项系数是共轭复数,故称他们是互成共轭的 m m m 次多项式。

此时方程变为 y ′ ′ + p y ′ + q = P ( x ) e ( λ + ω i ) x + P ‾ ( x ) e ( λ − ω i ) x y^{''}+py^{'}+q=P(x)e^{(\lambda+\omega i)x}+\overline{P}(x)e^{(\lambda-\omega i)x} y′′+py+q=P(x)e(λ+ωi)x+P(x)e(λωi)x

8.2.2 叠加原理

此时由之前的叠加原理,我们只需要解出这两个方程的解即可

y ′ ′ + p y ′ + q = P ( x ) e ( λ + ω i ) x y^{''}+py^{'}+q=P(x)e^{(\lambda+\omega i)x} y′′+py+q=P(x)e(λ+ωi)x

y ′ ′ + p y ′ + q = P ‾ ( x ) e ( λ − ω i ) x y^{''}+py^{'}+q=\overline{P}(x)e^{(\lambda-\omega i)x} y′′+py+q=P(x)e(λωi)x

对于方程 y ′ ′ + p y ′ + q = P ( x ) e ( λ + ω i ) x y^{''}+py^{'}+q=P(x)e^{(\lambda+\omega i)x} y′′+py+q=P(x)e(λ+ωi)x ,我们将 r = λ + ω i r = \lambda + \omega i r=λ+ωi代入特征方程 r 2 + p r + q = 0 r^2+pr+q=0 r2+pr+q=0 ,有以下两种情况:

情况1: r 2 + p r + q = 0 r^2+pr+q=0 r2+pr+q=0

情况2: r 2 + p r + q ≠ 0 r^2+pr+q\neq0 r2+pr+q=0 p 2 − 4 q < 0 p^2-4q < 0 p24q<0 2 λ + p ≠ 0 2\lambda+p\neq0 2λ+p=0

由8.1中的内容,我们不难求得这个方程的特解。

容易求得第一个方程的特解 y 1 ∗ = x k R m e ( λ + ω i ) x y^{*}_1=x^{k}R_me^{(\lambda+\omega i)x} y1=xkRme(λ+ωi)x ,其中 k k k λ + ω i \lambda + \omega i λ+ωi 不是对应特征方程的根 或 是特征方程的单根,取 0 或 1

8.2.3 共轭特解

同样也可以求出第二个方程的特解,经过求解我们可以发现这两个特解实际上成共轭

对于二者为共轭的情况,我们其实可以直接得出另一个方程的根:

课本上给出的解释是这样的:

由于 P ‾ ( x ) e ( λ − ω i ) x \overline{P}(x)e^{(\lambda-\omega i)x} P(x)e(λωi)x P ( x ) e ( λ + ω i ) x P(x)e^{(\lambda+\omega i)x} P(x)e(λ+ωi)x 成共轭,所以与 y 1 ∗ y^{*}_1 y1 成共轭的函数

y 2 ∗ = x k R m ‾ e ( λ − ω i ) x y_2^{*}=x_k\overline{R_m}e^{(\lambda-\omega i)x} y2=xkRme(λωi)x 必然也是方程的特解

根据叠加原理,我们很容易求得原方程的特解为:

y ∗ = x k e λ x [ R m e ω x i + R m ‾ e − ω x i ] y^{*}=x^k e^{\lambda x}[R_m e^{\omega x i}+\overline{R_m}e^{-\omega x i}] y=xkeλx[Rmeωxi+Rmeωxi]

我们利用欧拉公式 e i θ = c o s θ + i s i n θ e^{i\theta}=cos\theta+isin\theta eiθ=cosθ+isinθ 来消去虚部:

y ∗ = x k e λ x [ R m ( c o s ω x + i s i n ω x ) + R m ‾ ( c o s ω x − i s i n ω x ) ] y^{*}=x^k e^{\lambda x}[R_m (cos\omega x+isin\omega x)+\overline{R_m}(cos\omega x-isin\omega x)] y=xkeλx[Rm(cosωx+isinωx)+Rm(cosωxisinωx)]

由于二者共轭,所以相加后式子中不会再出现虚部,且因为 R m R_m Rm R m ‾ \overline{R_m} Rm 的实虚部系数并不相同,我们用 R m ( 1 ) ( x ) R_m^{(1)}(x) Rm(1)(x) R m ( 2 ) ( x ) R_m^{(2)}(x) Rm(2)(x) 来进行替换。

此时我们可以得到 f ( x ) = e λ x [ P l ( x ) c o s ω x + Q n ( x ) s i n ω x ] f(x)=e^{\lambda x}[P_l(x)cos\omega x+Q_n(x)sin \omega x] f(x)=eλx[Pl(x)cosωx+Qn(x)sinωx] 型的二阶常系数非齐次线性微分方程的特解形式为

y ∗ = x k e λ x [ R m ( 1 ) ( x ) c o s ω x + R m ( 2 ) ( x ) s i n ω x ] y^{*}=x^ke^{\lambda x}[R_m^{(1)}(x)cos\omega x+R_m^{(2)}(x)sin\omega x] y=xkeλx[Rm(1)(x)cosωx+Rm(2)(x)sinωx]

其中, m = m a x ( l , n ) , k { 0     ( λ + ω i ) 或 ( λ − ω i ) 不是特征方程的根 1     ( λ + ω i ) 或 ( λ − ω i ) 是特征方程的根 m=max(l,n),k\begin{cases}0 \ \ \ (\lambda+\omega i)或(\lambda-\omega i)不是特征方程的根\\ 1 \ \ \ (\lambda+\omega i)或(\lambda-\omega i)是特征方程的根\end{cases} m=max(l,n)k{0   (λ+ωi)(λωi)不是特征方程的根1   (λ+ωi)(λωi)是特征方程的根

同样,当我们在将此结论推广到 n n n 阶的时候, k k k 的取值条件也就变成了特征方程中含根 λ + ω i \lambda+\omega i λ+ωi (或 λ − ω i \lambda-\omega i λωi )的重复次数。(其实上面也是。)

注意: λ + ω i \lambda + \omega i λ+ωi λ − ω \lambda - \omega λω i 不能同时统计,只统计一个即可。

8.2.4 总结

8.2实际上补充了8.1中 p 2 − 4 q > 0 p^2-4q > 0 p24q>0 2 λ + p ≠ 0 2\lambda+p\neq0 2λ+p=0 时的方程特解问题。

特征方程的根特解形式
λ 2 + p λ + q ≠ 0 \lambda^2 + p\lambda + q \neq 0 λ2+pλ+q=0 y ∗ = x 0 R m ( x ) e λ x y^{*} = x^{0}R_m(x)e^{\lambda x} y=x0Rm(x)eλx y ∗ ′ ( x ) y^{*'}(x) y(x) y ∗ ′ ′ ( x ) y^{*''}(x) y′′(x) 代入 y ′ ′ + p y ′ + q y^{''}+py^{'}+q y′′+py+q 不会消掉最高次项。
2 λ + p ≠ 0 2\lambda+p\neq0 2λ+p=0取任意值 R m ( x ) = b 0 x m + b 1 x m − 1 + ⋯ + b m R_m(x) = b_0x^m + b_1x^{m-1} + \dots + b_m Rm(x)=b0xm+b1xm1++bm P m ( x ) = b 0 ′ x m + b 1 ′ x m − 1 + ⋯ + b m ′ P_m(x) = b_0'^{}x^m + b_1'x^{m-1} + \dots + b'_m Pm(x)=b0xm+b1xm1++bm
λ 2 + p λ + q = 0 \lambda^2 + p\lambda + q = 0 λ2+pλ+q=0 y ∗ = x R m ( x ) e λ x y^{*} = xR_m(x)e^{\lambda x} y=xRm(x)eλx y ∗ ′ ( x ) y^{*'}(x) y(x) y ∗ ′ ′ ( x ) y^{*''}(x) y′′(x) 代入 y ′ ′ + p y ′ + q y^{''}+py^{'}+q y′′+py+q 只消掉最高次项。
p 2 − 4 q > 0 p^2-4q > 0 p24q>0 2 λ + p ≠ 0 2\lambda+p\neq0 2λ+p=0 R m ( x ) = b 0 x m + b 1 x m − 1 + ⋯ + b m R_m(x) = b_0x^m + b_1x^{m-1} + \dots + b_m Rm(x)=b0xm+b1xm1++bm, P m ( x ) = b 0 ′ x m + b 1 ′ x m − 1 + ⋯ + b m ′ P_m(x) = b_0'^{}x^m + b_1'x^{m-1} + \dots + b'_m Pm(x)=b0xm+b1xm1++bm
8.2.5 例题

求微分方程 y ′ ′ − 2 y ′ + 5 y = e x s i n 2 x y^{''}-2y^{'}+5y=e^xsin2x y′′2y+5y=exsin2x 的通解

注意到 λ = 1 , P l ( x ) = 0 , Q n ( x ) = 1 , ω = 2 \lambda=1,P_l(x)=0,Q_n(x)=1,\omega =2 λ=1,Pl(x)=0,Qn(x)=1,ω=2

且容易得到原方程对应的齐次方程为 y ′ ′ − 2 y ′ + 5 y = 0 y^{''}-2y^{'}+5y=0 y′′2y+5y=0

特征方程为 r 2 − 2 r + 5 = 0 r^2-2r+5=0 r22r+5=0

由于 λ + ω i = 1 + 2 i \lambda + \omega i=1+2i λ+ωi=1+2i 是特征方程的根,那么我们设方程的特解为 y ∗ = x e x ( a c o s 2 x + b s i n 2 x ) y^{*}=xe^{x}(acos2x+bsin2x) y=xex(acos2x+bsin2x)

y ∗ ′ = ( x + 1 ) e x ( a c o s 2 x + b s i n 2 x ) + 2 x e x ( b c o s 2 x − a s i n 2 x ) y^{*'}=(x+1)e^{x}(acos2x+bsin2x)+2xe^{x}(bcos2x-asin2x) y=(x+1)ex(acos2x+bsin2x)+2xex(bcos2xasin2x)

y ∗ ′ ′ = ( x + 2 ) e x ( a c o s 2 x + b s i n 2 x ) − 4 x e x ( a c o s 2 x + b s i n 2 x ) y^{*''}=(x+2)e^x(acos2x+bsin2x)-4xe^x(acos2x+bsin2x) y′′=(x+2)ex(acos2x+bsin2x)4xex(acos2x+bsin2x)

代入原方程经过整理得到 e x ( 4 b c o s 2 x − 4 a s i n 2 x ) = e x s i n 2 x e^x(4bcos2x-4asin2x)=e^xsin2x ex(4bcos2x4asin2x)=exsin2x

那么容易得到 b = 0 , a = − 1 4 b=0,a=-\frac{1}{4} b=0,a=41

所以可以得到方程的通解为 y = e x ( C 1 s i n 2 x + C 2 c o s 2 x ) − x 4 e x c o s 2 x y=e^x(C_1sin2x+C_2cos2x)-\frac{x}{4}e^xcos2x y=ex(C1sin2x+C2cos2x)4xexcos2x

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值