8.12.13 ACM-ICPC数学 数论 中国剩余定理

8.12.13 ACM-ICPC数学 数论 中国剩余定理

引言

中国剩余定理(Chinese Remainder Theorem, CRT)是数论中的重要定理,广泛应用于计算机科学、密码学以及算法竞赛(如ACM-ICPC)中。本节将详细讨论中国剩余定理的定义、应用以及代码实现。

中国剩余定理的定义

中国剩余定理描述的是一类同余方程组的解法。它的基本形式是:

给定互素整数 𝑛1,𝑛2,…,𝑛𝑘n1​,n2​,…,nk​,以及任意整数 𝑎1,𝑎2,…,𝑎𝑘a1​,a2​,…,ak​,要求解出一个整数 𝑥x,使得: 𝑥≡𝑎1(mod𝑛1)x≡a1​(modn1​) 𝑥≡𝑎2(mod𝑛2)x≡a2​(modn2​) ⋮⋮ 𝑥≡𝑎𝑘(mod𝑛𝑘)x≡ak​(modnk​)

中国剩余定理保证了此类方程组有解,并且所有解模 𝑁=𝑛1𝑛2⋯𝑛𝑘N=n1​n2​⋯nk​ 是唯一的。

解法步骤

  1. 计算模数的乘积: 𝑁=𝑛1⋅𝑛2⋅…⋅𝑛𝑘N=n1​⋅n2​⋅…⋅nk​

  2. 计算每个模数的部分积: 𝑁𝑖=𝑁𝑛𝑖Ni​=ni​N​

  3. 计算每个部分积的模逆元: 计算 𝑁𝑖Ni​ 在模 𝑛𝑖ni​ 下的逆元 𝑀𝑖Mi​,即: 𝑁𝑖⋅𝑀𝑖≡1(mod𝑛𝑖)Ni​⋅Mi​≡1(modni​)

  4. 求解 𝑥x: 𝑥=∑𝑖=1𝑘𝑎𝑖⋅𝑁𝑖⋅𝑀𝑖(mod𝑁)x=∑i=1k​ai​⋅Ni​⋅Mi​(modN)

实现代码

C++ 实现
#include <iostream>
#include <vector>
using namespace std;

// 扩展欧几里得算法求逆元
int ex_gcd(int a, int b, int& x, int& y) {
    if (b == 0) {
        x = 1;
        y = 0;
        return a;
    }
    int d = ex_gcd(b, a % b, x, y);
    int temp = x;
    x = y;
    y = temp - a / b * y;
    return d;
}

// 求逆元
int mod_inverse(int a, int m) {
    int x, y;
    int g = ex_gcd(a, m, x, y);
    if (g != 1) {
        throw "No modular inverse!";
    }
    return (x % m + m) % m;
}

// 中国剩余定理求解
int chinese_remainder_theorem(const vector<int>& a, const vector<int>& n) {
    int k = a.size();
    int N = 1;
    for (int i = 0; i < k; ++i) {
        N *= n[i];
    }

    int x = 0;
    for (int i = 0; i < k; ++i) {
        int Ni = N / n[i];
        int Mi = mod_inverse(Ni, n[i]);
        x = (x + a[i] * Ni * Mi) % N;
    }
    return (x + N) % N;
}

int main() {
    vector<int> a = {2, 3, 2};
    vector<int> n = {3, 5, 7};
    try {
        int result = chinese_remainder_theorem(a, n);
        cout << "The solution is: " << result << endl;
    } catch (const char* msg) {
        cerr << msg << endl;
    }
    return 0;
}

实例讲解

例题

求解以下同余方程组: 𝑥≡2(mod3)x≡2(mod3) 𝑥≡3(mod5)x≡3(mod5) 𝑥≡2(mod7)x≡2(mod7)

解法
  1. 计算模数的乘积: 𝑁=3×5×7=105N=3×5×7=105

  2. 计算每个模数的部分积: 𝑁1=1053=35N1​=3105​=35 𝑁2=1055=21N2​=5105​=21 𝑁3=1057=15N3​=7105​=15

  3. 计算每个部分积的模逆元: 𝑀1=35−1(mod3)=2M1​=35−1(mod3)=2 𝑀2=21−1(mod5)=1M2​=21−1(mod5)=1 𝑀3=15−1(mod7)=1M3​=15−1(mod7)=1

  4. 求解 𝑥x: 𝑥=(2×35×2+3×21×1+2×15×1)(mod105)x=(2×35×2+3×21×1+2×15×1)(mod105) 𝑥=(140+63+30)(mod105)x=(140+63+30)(mod105) 𝑥=233(mod105)x=233(mod105) 𝑥=23x=23

所以,方程组的解为 𝑥≡23(mod105)x≡23(mod105)。

应用

中国剩余定理在许多实际问题中都有应用,例如:

  1. 密码学:如RSA加密算法中的加速计算。
  2. 计算机科学:多项式求值、多余度校验等。
  3. 算法竞赛:处理大数运算,提高计算效率。

总结

本节介绍了中国剩余定理的基本定义、解法步骤、实例讲解以及代码实现。掌握这些内容对于理解数论中的许多问题和算法竞赛中的高效解题具有重要意义。通过代码示例,读者可以更好地理解和应用中国剩余定理解决实际问题。

  • 11
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

夏驰和徐策

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值