7.1 正弦波振荡电路

 

第7章 波形的发生和信号的转换

本章将探讨在模拟电子电路中波形的发生与信号的转换,这些技术对于测试信号和控制信号的生成至关重要。我们将详细讨论正弦波、矩形波、三角波和锯齿波等波形的产生方法及其应用,并探讨信号转换的原理与实际应用。

7.1 正弦波振荡电路

7.1.1 概述

正弦波振荡电路的核心是产生稳定的正弦波,不需要外加输入信号,主要依赖电路的自激振荡。这种振荡电路广泛应用于测量、遥控、通信、自动控制等多种领域。

产生正弦波振荡的条件

正弦波振荡的产生依赖于电路中的负反馈和正反馈机制。在负反馈放大电路中,如果在特定频率(f₀)处电路产生的附加相移为±π,并且振幅增益 |AF| 大于1,电路将产生自激振荡。这种振荡频率不仅取决于电路的电阻和电容,还受到晶体管极间电容和电路的分布电容等不确定因素的影响。

正弦波振荡电路与负反馈放大电路的主要区别在于,正弦波振荡电路采用正反馈,并且引入选频网络以控制振荡频率。这使得输出的振荡频率可以人为地进行控制,以满足特定的应用需求。

正弦波振荡电路的组成

正弦波振荡电路通常由以下两部分组成:

  1. 放大电路:负责提供必要的增益,使电路能够维持振荡。
  2. 反馈网络:负责提供必要的相位变化和频率选择,确保电路输出特定频率的正弦波。

电路的起振条件是 |AF| > 1,在没有输入信号的情况下,电路通过自我激励的方式逐步达到一个稳态,此时输出的是一个稳定频率(f₀)的正弦波。

图7.1.1(a) 展示了正弦波振荡电路的基本结构,包括放大电路和反馈网络。图7.1.1(b) 显示了在无外部输入的情况下,反馈信号作为净输入的情形。电路中的动态平衡是由放大电路和反馈网络共同作用达成的,保证输出量(X₀)通过反馈网络回到放大电路,形成一个闭环。

幅值与相位条件

为了确保电路输出稳定的正弦波,需要满足以下两个条件:

  • 幅值条件(7.1.2a):确保振荡的持续性。
  • 相位条件(7.1.2b):确保输出信号的稳定性和周期性。

这些条件共同保证了正弦波振荡电路能够在无需外部激励的情况下,持续产生稳定的正弦波输出。

2 正弦波振荡电路的组成及分类

正弦波振荡电路是一种无需外部输入信号,能自我激励产生稳定正弦波的电路。了解其组成及分类有助于更好地设计和应用这类电路。

组成部分

一个完整的正弦波振荡电路通常包含以下四个基本部分:

  1. 放大电路:负责提供足够的增益,支持电路从起振到达到动态平衡的过程,以确保获得稳定的输出幅值。
  2. 选频网络:用于确定电路的振荡频率,确保电路只产生单一频率的正弦波。
  3. 正反馈网络:引入正反馈,使得放大电路的输入信号与反馈信号相等,从而维持振荡。
  4. 稳幅环节(非线性环节):负责稳定输出信号的幅值,通常利用元件的非线性特性(如晶体管)来实现。

在许多实际应用的电路中,选频网络和正反馈网络可能合二为一,而稳幅功能可能直接依靠元件的非线性特性来实现,无需额外的稳幅环节。

分类

正弦波振荡电路根据其选频网络的组成元素,可分为以下几类:

  • RC正弦波振荡电路:使用电阻器和电容器组成的选频网络,一般用于产生较低频率(1 MHz以下)的正弦波。
  • LC正弦波振荡电路:使用电感器和电容器组成的选频网络,适用于产生高于1 MHz频率的正弦波。
  • 石英晶体正弦波振荡电路:可以视为一种特殊的LC振荡电路,特点是具有极高的频率稳定性,常用于精密设备中。

7.3 判断电路是否可能产生正弦波振荡的方法和步骤

要确定一个电路是否能产生正弦波振荡,可以通过以下步骤进行:

  1. 组成检查:检查电路是否包含放大电路、选频网络、正反馈网络和稳幅环节。
  2. 放大电路功能检查:确保放大电路有适当的静态工作点,并能正常接收、输出和放大动态信号。
  3. 相位条件检验(瞬时极性法):断开反馈,向放大电路输入一个特定频率的正弦波,并观察输出电压的极性。如图7.1.2所示,如果输出电压与输入电压极性相同,表明电路满足相位条件,可能产生正弦波振荡。
  4. 幅值条件验证:确保电路满足正弦波振荡的幅值条件,即放大倍数 |AF| 应大于1。

通过这些步骤,可以有效地评估并调试正弦波振荡电路,确保其稳定运行,满足应用需求。

 

 

 

7.1.2 利用瞬时极性法判断相位条件是否满足起振条件

瞬时极性法的应用

在正弦波振荡电路的设计和分析中,正确判断电路是否能起振是关键步骤之一。瞬时极性法是一种有效的方法,用于确定电路是否满足必要的相位条件。具体步骤如下:

  1. 求解放大系数A和反馈系数F:首先,独立分析电路中的放大部分和反馈部分,计算各自的传输系数。
  2. 计算复合增益|AF|:将放大系数A与反馈系数F相乘,得到总的环路增益AF。
  3. 判断条件|AF| > 1:只有当复合增益的绝对值大于1时,电路才有可能满足起振条件。如果|AF| ≤ 1,电路不会产生振荡。

此外,电路必须首先满足相位条件才有进一步检查幅值条件的必要。如果电路不满足相位条件,则无论幅值条件是否满足,电路都不会振荡。

7.1.2 RC正弦波振荡电路

RC桥式(文氏桥)正弦波振荡电路

RC桥式振荡电路,也称为文氏桥振荡电路,是一种常用的低频正弦波振荡电路。下面是关于这种电路的详细介绍:

电路组成与工作原理
  1. RC串并联选频网络:这个网络由两个串联的RC网络和两个并联的RC网络组成,通常选取 𝑅1=𝑅2=𝑅R1​=R2​=R 和 𝐶1=𝐶2=𝐶C1​=C2​=C。这种布局既充当选频网络,也提供所需的正反馈。

  2. 振荡频率:由RC网络确定,其特点是能在特定频率(𝑓0f0​)产生同相位的反馈,从而满足正弦波振荡的相位条件。理想情况下,振荡频率可通过 𝑓0=12𝜋𝑅𝐶f0​=2πRC1​ 近似计算。

等效电路与频率特性
  • 低频段等效电路:在低频时,𝑈1U1​ 超前 𝑈0U0​,相位差趋向于 +90°。
  • 高频段等效电路:在高频时,𝑈1U1​ 滞后 𝑈0U0​,相位差趋向于 -90°。

通过改变信号频率,可以观察 𝑈1U1​ 的相位从 +90° 变化到 -90°。存在一个特定频率 𝑓0f0​,在该频率下 𝑈1U1​ 与 𝑈0U0​ 同相,即相位差为 0°。

频率特性图解

根据上述理论分析,可以绘制RC串并联选频网络的频率特性图(如图7.1.4所示),展示振荡频率 𝑓f 对应的幅值和相位特性。当 𝑓=𝑓0f=f0​ 时,相位为 0°,表明电路处于理想的起振条件。

结论

文氏桥振荡电路是设计低频正弦波振荡器的经典选择,其简洁的组成和可预测的性能使其在多种应用中非常有用,尤其是在需要稳定低频振荡源的场合。通过精确设计RC组件,可以达到所需的振荡频率和稳定性。

 

7.1.3 LC正弦波振荡电路

LC正弦波振荡电路与RC桥式正弦波振荡电路的组成原则在本质上是相同的,只是选频网络采用LC电路。在LC振荡电路中,当 𝑓=𝑓0f=f0​ 时,放大电路的放大倍数数值最大,而其余频率的信号均被衰减到零;引入正反馈后,使反馈电压作为放大电路的输入电压,以维持输出电压,从而形成正弦波振荡。由于LC正弦波振荡电路的振荡频率较高,所以放大电路多采用分立元件电路,必要时还应采用共基电路,也可采用宽频带集成运放。

一、LC谐振回路的频率特性

常见的LC正弦波振荡电路中的选频网络多采用LC并联网络,如图7.1.9所示。

图7.1.9 LC并联网络

(a) 理想情况下的网络 (b) 考虑电路损耗时的网络

在理想电路中,无损耗,谐振频率为:

在信号频率较低时,电容的容抗很大,网络呈感性;在信号频率较高时,电感的感抗很大,网络呈容性;只有当 𝑓=𝑓0f=f0​ 时,网络才呈纯阻性,且阻抗无穷大。这时电路产生电流谐振,电容的电场能转换成磁场能,而电感的磁场能又转换成电场能,两种能量相互转换。

实际的LC并联网络总是有损耗的,将各种损耗等效成电阻 𝑅R,如图(b)所示。电路的导纳为:

令式中虚部为零,可求出谐振角频率:

式中 𝑄Q 为品质因数,并且

当 𝑄≫1Q≫1 时, 𝜔0≈1𝐿𝐶ω0​≈LC​1​,所以谐振频率为:

选频网络的损耗愈小,谐振频率相同时,电容容量愈小,电感数值愈大,品质因数愈大,将使得选频特性愈好。

当 𝑓=𝑓0f=f0​ 时,电抗:

当 𝑄>1Q>1 时, 𝑍0≈𝑄2𝑅Z0​≈Q2R,将式代入整理可得:

图7.1.10 LC并联网络电抗的频率特性

若以LC并联网络作为共射放大电路的集电极负载,如图7.1.11所示,则电路的电压放大倍数:

𝐴𝑣=−𝛽𝑍𝑅𝑠+𝑍Av​=−βRs​+ZZ​

根据LC并联网络的频率特性,当 𝑓=𝑓0f=f0​ 时,电压放大倍数的数值最大,且无附加相移。对于其余频率的信号,电压放大倍数不但数值减小,而且有附加相移。电路具有选频特性,故称之为选频放大电路。若在电路中引入正反馈,并能用反馈电压取代输入电压,则电路就成为正弦波振荡电路。根据引入反馈方式的不同,LC正弦波振荡电路分为变压器反馈式、电感反馈式和电容反馈式三种电路;所用放大电路视振荡频率而定,可用共射电路、共基电路或者是宽频带集成运放。

二、变压器反馈式振荡电路

1. 工作原理

引入正反馈最简单的方法是采用变压器反馈方式,如图7.1.12所示;为使反馈电压与输入电压同相,同名端如图中所标注。当反馈电压取代输入电压时,就得到变压器反馈式振荡电路,如图7.1.13所示。

图7.1.12 在选频放大电路中引入正反馈

图7.1.13 变压器反馈式振荡电路

对于图7.1.13所示的电路,可以用前面所叙述的方法判断电路产生正弦波振荡的可能性。首先,观察电路,存在放大电路、选频网络、正反馈网络以及用晶体管的非线性特性所实现的稳幅环节四个部分。然后,判断放大电路能否正常工作,图中放大电路是典型的工作点稳定电路,可以设置合适的静态工作点;电路的交流通路如图7.1.14所示,交流信号传递过程中无开路或短路现象,电路可以正常放大。最后,采用瞬时极性法判断电路是否满足相位平衡条件。在图7.1.14中,断开P点,加 𝑓=𝑓0f=f0​ 的输入电压,规定其极性,得到变压器一次线圈 𝑁1N1​ 电压的极性,进而得到二次线圈 𝑁2N2​ 电压的极性,如图中所标注,故电路满足相位条件,有可能产生正弦波振荡。

图7.1.14 变压器反馈式振荡电路的交流通路

而在多数情况下,不必画出交流通路就可判断电路是否满足相位条件。具体做法是:在图7.1.13所示电路中,断开P点,在断开处给放大电路加 𝑓=𝑓0f=f0​ 的输入电压 𝑈𝑖𝑛Uin​,给定其极性对“地”为正,因而晶体管基极动态电位对“地”为正,由于放大电路为共射接法,故集电极动态电位对“地”为负;对于交流信号,电源相当于“地”,所以线圈 𝑁1N1​ 上电压为上“正”下“负”;根据同名端, 𝑁2N2​ 上电压也为上“正”下“负”,即反馈电压对“地”为正,与输入电压假设极性相同,满足正弦波振荡的相位条件。

图7.1.13所示电路表明,变压器反馈式振荡电路中放大电路的输入电阻是放大电路负载的一部分,因此 𝐴A 与 𝐹F 相互关联。一般情况下,只要合理选择变压器一次、二次线圈的匝数比以及其它电路参数,电路很容易满足幅值条件。

2. 振荡频率及起振条件

图7.1.13所示变压器反馈式振荡电路的交流等效电路如图7.1.15所示。 𝑅R 是LC谐振回路、负载等的总损耗, 𝐿1L1​ 为考虑到 𝑁1N1​ 回路参数折合到一次侧的等效电感, 𝐿2L2​ 为二次电感, 𝑀M 为 𝑁1N1​ 和 𝑁2N2​ 间的等效互感; 𝑅𝑖Ri​ 为放大电路的输入电阻,其值 𝑅𝑖=𝑅𝑖𝑛1//𝑅𝑖𝑛2//𝑟Ri​=Rin1​//Rin2​//r。

图7.1.15 变压器反馈式振荡电路的交流等效电路

(a) 交流等效电路 (b) 变压器部分的等效电路

为了分析振荡频率和起振条件,首先求解图7.1.15(a)中从A和B两点向右边看进去的等效电路及其参数。在变压器一次侧,有:

在二次侧,有:

将式(7.1.17)代入式(7.1.16),整理可得:

𝑈1=(𝑅′+𝑗𝜔𝐿′)𝑖1U1​=(R′+jωL′)i1​

其中:

因此,从变压器一次侧向二次侧看进去的等效电路如图7.1.15(b)所示,为典型的LC谐振回路。但与之相比,带负载后,电感量变小,损耗变大,因而品质因数变小,选频特性变差。其品质因数:

𝑄=𝜔0𝐿𝑅Q=Rω0​L​

当 𝑄>1Q>1 时,振荡频率:

根据前面的分析可知,在谐振频率下, 𝐿1L1​ 中电流的数值约为晶体管集电极电流的 𝑄Q 倍,即:

𝑖𝐿1≈𝑄⋅𝐼𝐶iL1​≈Q⋅IC​

根据式(7.1.17),反馈电压:

电路的起振条件:

𝛽≥1𝑄β≥Q1​

式(7.1.22)表明选频网络的品质因数愈大,对晶体管电流放大系数的要求愈低。若将式(7.1.20)和式(7.1.21)代入式(7.1.22),则得出起振条件为:

𝛽≥1𝑄β≥Q1​

3. 优缺点

变压器反馈式振荡电路易于产生振荡,波形较好,应用范围广泛。但是,由于输出电压与反馈电压靠磁路耦合,因而耦合不紧密,损耗较大。并且振荡频率的稳定性不高。

三、电感反馈式振荡电路

1. 电路组成

为了克服变压器反馈式振荡电路中变压器一次线圈和二次线圈耦合不紧密的缺点,可将 𝑁1N1​ 和 𝑁2N2​ 合并为一个线圈,把图7.1.13所示电路中线圈 𝑁1N1​ 接电源的一端和 𝑁2N2​ 接地的一端相连作为中间抽头;为了加强谐振效果,将电容 𝐶C 跨接在整个线圈两端,如图7.1.16所示。

图7.1.16 电感反馈式振荡电路

2. 工作原理

利用判断电路能否产生正弦波振荡的方法来分析图7.1.16所示电路。首先观察电路,它包含了放大电路、选频网络、反馈网络和非线性元件——晶体管四个部分,而且放大电路能够正常工作。然后用瞬时极性法判断电路是否满足正弦波振荡的相位条件:断开反馈,加频率为 𝑓0f0​ 的输入电压,给定其极性,判断出从 𝑁2N2​ 上获得的反馈电压极性与输入电压相同,故电路满足正弦波振荡的相位条件,各点瞬时极性如图中所标注。只要电路参数选择得当,电路就可满足幅值条件,而产生正弦波振荡。

图7.1.17 电感反馈式振荡电路的交流通路

一次线圈的三个端分别接在晶体管的三个极,故称电感反馈式振荡电路为电感三点式电路。

3. 振荡频率和起振条件

断开反馈且空载情况下的交流等效电路如图7.1.18所示。

图7.1.18 电感反馈式振荡电路的交流等效电路

设 𝑁1N1​ 的电感量为 𝐿1L1​, 𝑁2N2​ 的电感量为 𝐿2L2​, 𝑁1N1​ 与 𝑁2N2​ 间的互感为 𝑀M,且品质因数远大于1,则振荡频率:

反馈系数的数值:

因而,从A和B两端向右看的等效电阻为:

设 𝑅𝐿RL​ 为 𝑅1R1​ 折合到A、B两点间的等效电阻,则集电极总负载:

当 𝑓=𝑓0f=f0​ 且 𝑄>1Q>1 时,LC回路产生谐振,等效电阻非常大,所取电流可忽略不计,因此放大电路的电压放大倍数:

根据 ∣𝐴𝛽∣>1∣Aβ∣>1,利用式(7.1.25)和式(7.1.28),可得起振条件为:

4. 优缺点

电感反馈式振荡电路中 𝑁2N2​ 与 𝑁1N1​ 之间耦合紧密,振幅大;当 𝐶C 采用可变电容时,可以获得调节范围较宽的振荡频率,最高振荡频率可达几十兆赫。由于反馈电压取自电感,对高频信号具有较大的电抗,输出电压波形中常含有高次谐波。因此,电感反馈式振荡电路常用在对波形要求不高的设备之中,如高频加热器、接收机的本机振荡器等。

四、电容反馈式振荡电路

1. 电路组成

为了获得较好的输出电压波形,若将电感反馈式振荡电路中的电感换成电容,电容换成电感,并在置换后将两个电容的公共端接地,且增加集电极电阻 𝑅𝑐Rc​,就可得到电容反馈式振荡电路,如图7.1.19所示。因为两个电容的三个端分别接晶体管的三个极,故也称之为电容三点式电路。

图7.1.19 电容反馈式振荡电路

2. 工作原理

根据正弦波振荡电路的判断方法,观察图7.1.19所示电路,包含了放大电路、选频网络、反馈网络和非线性元件——晶体管四个部分,而且放大电路能够正常工作。断开反馈,加频率为 𝑓0f0​ 的输入电压,给定其极性,判断出从 𝐶2C2​ 上所获得的反馈电压的极性与输入电压相同,故电路满足正弦波振荡的相位条件,各点瞬时极性如图中所标注。只要电路参数选择得当,电路就可满足幅值条件,而产生正弦波振荡。

3. 振荡频率和起振条件

当由 𝐿L、 𝐶1C1​ 和 𝐶2C2​ 所构成的选频网络的品质因数 𝑄Q 远大于1时,振荡频率:

设 𝐶1C1​ 和 𝐶2C2​ 的电流分别为 𝐼𝐶1IC1​ 和 𝐼𝐶2IC2​,则反馈系数:

电压放大倍数:

在空载情况下,类比式(7.1.26)可知,式(7.1.32)中集电极等效负载:

𝑅𝐿=𝑅′//𝑅𝐿RL​=R′//RL​

根据 ∣𝐴𝛽∣>1∣Aβ∣>1,利用式(7.1.31)和式(7.1.32),可得起振条件为:

𝛽>1𝐴β>A1​

与电感反馈式振荡电路相类似,若增大 𝐶1/𝐶2C1​/C2​,则一方面反馈系数数值随之增大,有利于电路起振;另一方面,它又使 𝑅𝐿RL​ 减小,从而造成电压放大倍数数值减小,不利于电路起振。因此, 𝐶1/𝐶2C1​/C2​ 既不能太大,又不能太小,具体数值应通过实验来确定。

电容反馈式振荡电路的输出电压波形好,但若用改变电容的方法来调节振荡频率,则会影响电路的起振条件;而若用改变电感的方法来调节振荡频率,则比较困难。所以,电容反馈式振荡电路常常用在固定振荡频率的场合。在振荡频率可调范围不大的情况下,可采用图7.1.20所示电路取代图7.1.19所示电路中的选频网络。

图7.1.20 频率可调的选频网络

4. 稳定振荡频率的措施

若要提高电容反馈式振荡电路的振荡频率,则势必要减小 𝐶1C1​、 𝐶2C2​ 的电容量和 𝐿L 的电感量。实际上,当 𝐶1C1​ 和 𝐶2C2​ 减小到一定程度时,晶体管的极间电容和电路中的杂散电容将影响振荡频率。这些电容等效为放大电路的输入电容 𝐶𝑖𝑛Cin​ 和输出电容 𝐶𝑜𝑢𝑡Cout​,它们分别与 𝐶1C1​ 和 𝐶2C2​ 并联,如图7.1.21所标注。由于极间电容受温度的影响,杂散电容又难于确定,为了稳定振荡频率,在设计电路时,必须能够使 𝐶𝑖𝑛Cin​ 和 𝐶𝑜𝑢𝑡Cout​ 对选频特性的影响忽略不计。试想,如果 𝐶1C1​ 和 𝐶2C2​ 远大于极间电容和杂散电容,只起分压作用,以便获得合适的反馈电压,而几乎对振荡频率无影响,那么电路的振荡频率就可能很稳定。具体方法是在电感所在支路串联一个小容量电容 𝐶𝑠Cs​,而且 𝐶𝑠≪𝐶1Cs​≪C1​, 𝐶𝑠≪𝐶2Cs​≪C2​,这样

总电容约为 𝐶𝑠Cs​,因而电路的振荡频率

几乎与 𝐶1C1​ 和 𝐶2C2​ 无关,当然,也就几乎与极间电容和杂散电容无关了。

若要求电容反馈式振荡电路的振荡频率高达100 MHz以上,则要考虑采用共基放大电路,如图7.1.22所示。图中 𝐶𝑏Cb​ 为旁路电容,对交流信号可视为短路;放大电路为共基放大电路。断开反馈,给放大电路加频率为 𝑓0f0​ 的输入电压,极性为上“+”下“-”; 因共基放大电路的输出电压与输入电压同相,故集电极动态电位为“+”; 选频网络的电压方向为上“-”下“+”,因此从 𝐶1C1​ 上获得的反馈电压也为上“-”下“+”,与输入电压同相,所以电路满足正弦波振荡的相位平衡条件。如果参数选择合适,使电路满足起振条件,那么电路就一定会产生正弦波振荡。

图7.1.21 电容反馈式振荡电路的改进

图7.1.22 采用共基放大电路的电容反馈式振荡电路

通过以上分析可知,在判断电路是否可能产生正弦波振荡,即判断电路是否满足正弦波振荡的相位条件时,必须弄清反馈电压取自哪个线圈或电容,而通常这个线圈或电容总有一端为交流通路的“地”。


例题

【例7.1.2】电路如图7.1.23所示,图中 𝐶𝑏Cb​ 为旁路电容, 𝐶1C1​ 为耦合电容,对交流信号均可视为短路。为使电路可能产生正弦波振荡,试说明变压器一次线圈和二次线圈的同名端。

:图7.1.23所示电路中的放大电路为共基放大电路。断开反馈,给放大电路加频率为 𝑓0f0​ 的输入电压,极性为上“+”下“-”; 集电极动态电位为“+”, 选频网络的电压极性为上“-”下“+”; 从变压器二次侧获得的反馈电压应为上“+”下“-”, 才满足正弦波振荡的相位平衡条件。因此,变压器一次线圈的下端和二次线圈的上端为同名端;或者说一次线圈的上端和二次线圈的下端为同名端。

图7.1.23 例7.1.2电路图

【例7.1.3】改正图7.1.24所示电路中的错误,使之有可能产生正弦波振荡。要求不能改变放大电路的基本接法。

:观察电路, 𝐶𝑏Cb​ 容量远大于 𝐶1C1​ 和 𝐶2C2​,故为旁路电容,对交流信号可视为短路。 𝐶1C1​、 𝐶2C2​ 和 𝐿L 构成LC并联谐振网络, 𝐶2C2​ 上的电压为输出电压, 𝐶1C1​ 上的电压为反馈电压,因而电路为电容反馈式振荡电路。

电感 𝐿L 连接晶体管的基极和集电极,在直流通路中使两个极近似短路,造成放大电路的静态工作点不合适,故应在选频网络与放大电路输入端之间加耦合电容。

晶体管的集电极直接接电源,在交流通路中使集电极与发射极短路,因而输出电压恒等于零,所以必须在集电极加电阻 𝑅𝑐Rc​。

改正电路如图7.1.25所示,与图7.1.19所示电路相比,同为电容反馈式振荡电路,只是画法不同而已。

图7.1.24 例7.1.3电路图

图7.1.25 图7.1.24所示电路的改正电路

 

 

7.1.4 石英晶体正弦波振荡电路

石英晶体谐振器,简称石英晶体,具有非常稳定的固有频率。对于振荡频率的稳定性要求高的电路,应选用石英晶体作选频网络。

一、石英晶体的特点

将二氧化硅 (SiO₂) 结晶体按一定的方向切割成很薄的晶片,再将晶片两个对应的表面抛光和涂敷银层,并作为两个极引出引脚,加以封装,就构成石英晶体谐振器。其结构示意图和符号如图7.1.26所示。

1. 压电效应和压电振荡

在石英晶体两个引脚加交变电场时,它将会产生一定频率的机械变形,而这种机械振动又会产生交变电场,上述物理现象称为压电效应。一般情况下,无论是机械振动的振幅,还是交变电场的振幅都非常小。但是,当交变电场的频率为某一特定值时,振幅骤然增大,产生共振,称之为压电振荡。这一特定频率就是石英晶体的固有频率,也称为谐振频率。

图7.1.26 石英晶体谐振器的结构示意图及符号

(a) 结构示意图 (b) 符号

2. 石英晶体的等效电路和振荡频率

石英晶体的等效电路如图7.1.27(a)所示。当石英晶体不振动时,可等效为一个平板电容 𝐶0C0​,称为静态电容;其值决定于晶片的几何尺寸和电极面积,一般约为几皮法到几十皮法。当晶片产生振动时,机械振动的惯性等效为电感 𝐿L,其值为几毫亨到几十毫亨。晶片的弹性等效为电容 𝐶C,其值仅为0.01-0.1 pF,因此 𝐶≪𝐶0C≪C0​。晶片的摩擦损耗等效为电阻 𝑅R,其值约为100 Ω,理想情况下 𝑅=0R=0。

图7.1.27 石英晶体的等效电路及其频率特性

(a) 等效电路 (b) 频率特性

当等效电路中的 𝐿L、 𝐶C、 𝑅R 支路产生串联谐振时,该支路呈纯阻性,等效电阻为 𝑅R,谐振频率为:

谐振频率下整个网络的电抗等于 𝑅R 并联 𝐶0C0​ 的容抗,因 𝑅≪𝜔0𝐶0R≪ω0​C0​,故可以近似认为石英晶体也呈纯阻性,等效电阻为 𝑅R。

当 𝑓<𝑓𝑠f<fs​ 时, 𝐶C 和 𝐶0C0​ 电抗较大,起主导作用,石英晶体呈容性。当 𝑓>𝑓𝑠f>fs​ 时, 𝐿L、 𝐶C、 𝑅R 支路呈感性,将与 𝐶0C0​ 产生并联谐振,石英晶体又呈纯阻性,谐振频率为:

由于 𝐶≪𝐶0C≪C0​,所以 𝑓𝑝≈𝑓𝑠fp​≈fs​。

当 𝑓>𝑓𝑝f>fp​ 时,电抗主要决定于 𝐶0C0​,石英晶体又呈容性。因此,若 𝑅=0R=0,则石英晶体电抗的频率特性如图7.1.27(b)所示,只有在 𝑓𝑠<𝑓<𝑓𝑝fs​<f<fp​ 的情况下,石英晶体才呈感性;并且 𝐶C 和 𝐶0C0​ 的容量相差愈悬殊, 𝑓𝑠fs​ 和 𝑓𝑝fp​ 愈接近,石英晶体呈感性的频带愈狭窄。

根据品质因数的表达式:

𝑄=𝜔0𝐿𝑅Q=Rω0​L​

由于 𝐶C 和 𝑅R 的数值都很小, 𝐿L 数值很大,所以 𝑄Q 值高达 104−106104−106。而且,因为振荡频率几乎仅决定于晶片的尺寸,所以其稳定度 Δ𝑓/𝑓0Δf/f0​ 可达 10−7−10−910−7−10−9,一些产品甚至高达到 10−10−10−1110−10−10−11。而即使最好的LC振荡电路,𝑄Q 值也只能达到几百,振荡频率的稳定度也只能达到 10−510−5。因此,石英晶体的选频特性是其它选频网络不能比拟的。

二、石英晶体正弦波振荡电路

1. 并联型石英晶体正弦波振荡电路

如果用石英晶体取代图7.1.19所示电路中的电感,就得到并联型石英晶体正弦波振荡电路,如图7.1.28所示。图中电容 𝐶1C1​ 和 𝐶2C2​ 与石英晶体中的 𝐶0C0​ 并联,总容量大于 𝐶0C0​,当然远大于石英晶体中的 𝐶C,所以电路的振荡频率约等于石英晶体的并联谐振频率 𝑓𝑝fp​。

图7.1.28 并联型石英晶体振荡电路

2. 串联型石英晶体正弦波振荡电路

图7.1.29所示为串联型石英晶体正弦波振荡电路。电容 𝐶C 为旁路电容,对交流信号可视为短路。电路的第一级为共基放大电路,第二级为共集放大电路。若断开反馈,给放大电路加输入电压,极性上“+”下“-”;则 𝑇1T1​ 管的集电极动态电位为“+”,𝑇2T2​ 管的发射极动态电位也为“+”。只有在石英晶体呈纯阻性,即产生串联谐振时,反馈电压才与输入电压同相,电路才满足正弦波振荡的相位平衡条件。所以,电路的振荡频率为石英晶体的串联谐振频率 𝑓𝑠fs​。调整 𝑅1R1​ 的阻值,可使电路满足正弦波振荡的幅值平衡条件。

图7.1.29 串联型石英晶体振荡电路

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

夏驰和徐策

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值