现代通信原理10.1:带宽无限信道下采用低通滤波器(LPF)接收时的误码性能分析

1、为何要分析数字系统的误码率?

  从《现代通信原理8.3:数字通信系统常用性能指标》中我们知道,系统的误码率定义为错误的码元个数除以传输的总码元个数。例如,如果传送了100万个码元,其中有54个码元出错,我们可以得到误码率为 5.4 × 1 0 − 5 5.4\times 10^{-5} 5.4×105。、
   显然,尽管上述计算方法可以获得误码率,但我们必须先要有了通信系统,不论是实际工作的通信系统,还是仿真系统,进行了随机试验,比如确实发送1百万个码元,对错误码元进行测试统计,才能够得到结果。
   这就带来两个问题。一方面,我们在设计一个新的系统时,可能会希望首先知道它的误码率如何,确定它能够满足自己的需要的时候,才会对其进行仿真或者实现。第二方面,即使我们有了这样的实际系统或者仿真系统,测试误码率的实际结果可能会花费大量时间。因为误码率结果只有在测试样本足够大的前提下,才可能较为准确(就像我们需要把硬币扔足够多次,其正面向上的概率才能够非常接近0.5一样)。
   因此,我们希望是否能够通过理论分析的方法,来获得误码率的结果。这个结果实际上是码元错误的概率,而上述测试得到的结果会无限接近这个概率。因而,对各类系统的误码性能进行理论分析,是非常重要且活跃的研究领域。

2、采用低通滤波器接收时的的频带无限二进制基带传输系统误码性能分析

2.1 二进制基带传输系统误码性能分析模型

  下面我们来看二进制基带系统的误码率分析模型,如图1所示,事实上也就是数字基带传输系统模型,我们希望能够得到 { b n } \{b_n\} {bn} { b ^ n } \{\hat b_n\} {b^n}的差错概率。

在这里插入图片描述

图1 数字基带传输系统模型

  首先想要强调下这里我们所讨论的系统的特点:

  • 二进制系统:发送波形为 s 1 ( t ) s_1(t) s1(t) s 2 ( t ) s_2(t) s2(t)
  • 信道带宽无穷大:
  • AWGN信道:
  • 接收滤波器为低通滤波器:

在《现代通信原理9.2:数字基带传输系统模型》中,我们谈到,发射机发送的信号,经过信道之后到达接收端。这里考虑带宽无限信道,则接收信号为
r ( t ) = s ( t ) + n w ( t ) . (1) \tag{1} r(t)=s(t)+n_w(t). r(t)=s(t)+nw(t).(1)该信号进入接收机,经过的第一个模块是接收滤波器,接收滤波器输出信号为
y ( t ) = r ( t ) ∗ g R ( t ) . (2) \tag{2} y(t)=r(t)*g_R(t). y(t)=r(t)gR(t).(2)

  下面我们来回答《现代通信原理9.2:数字基带传输系统模型》中提出的问题,接收滤波器的作用是什么呢?
  回忆下在模拟系统中,进入接收机之后的第一个模块,也是滤波器。它的主要作用是尽量限制进入接收机的噪声功率,这样可以使得接收信号的信噪比尽量大,波形失真尽量小。
  那么在数字系统里面,是否也是这样的思路呢?后面我们再来深入讨论。在这个部分,我们还是先从这个角度入手。也就是说,接收滤波器的第一个作用,是让有用信号能够无失真地通过的前提下,尽量限制噪声功率,因此这里我们把接收滤波器设计为低通滤波器。

  如前所述,为了尽量限制进入接收机噪声功率,这里我们将接收滤波器设计为理想低通滤波器,其功率传递函数如图2(b)所示,带宽为 B B B。下面我们来看(1)中的有用信号与AWGN经过滤波器之后会发生什么样的变化。

  • 高斯白噪声
      首先我们来看噪声部分。加性高斯白噪声 n w ( t ) n_w(t) nw(t)功率谱密度如图2(a)所示,经过接收滤波器之后,变为低通AWGN,双边功率谱密度如图2©所示,其功率为 P n = N 0 B P_n=N_0B Pn=N0B
    在这里插入图片描述
    图2 噪声通过低通滤波器
  • 有用信号
      下面我们来看 r ( t ) r(t) r(t)中有用部分信号。
      前面我们谈到,这里考虑信道为带宽无限的,在这种情况下,我们一般会采用方波。
      这里我们来看两个例子,即双极性不归零方波与单极性不归零方波,其示意图分别如图3(a)和(d)所示。需要注意的是,事实上这种波形所占据的频带是无穷大的(其分析详见《现代通信原理9.3:数字基带信号功率谱密度》,因此通过图2(b)中的低通接收滤波器,信号波形会有失真。为了简化分析,这里我们假定接收滤波器带宽 B B B足够宽,波形失真可以忽略不计。
    在这里插入图片描述
图3 单/双极性不归零方波波形示意图

  从图1来看,接收滤波器输出信号可以表示为
y ( t ) = s ( t ) + n ( t ) , y(t)=s(t)+n(t), y(t)=s(t)+n(t),这里的 n ( t ) = n w ( t ) ∗ g R ( t ) n(t)=n_w(t)*g_R(t) n(t)=nw(t)gR(t),由于接收滤波器采用带宽为 B B B的理想低通滤波器,因此其功率谱密度 P N ( f ) P_N(f) PN(f)如图2(c )所示。
   y ( t ) y(t) y(t)经过抽样器,若在每个码元的 t 0 t_0 t0时刻抽样,这里 0 ≤ t 0 ≤ T s 0\le t_0\le T_s 0t0Ts,则在第 n n n个码元周期,可以得到判决变量为
y n = y ( n T s + t 0 ) , y_n=y(nT_s+t_0), yn=y(nTs+t0),在判决模块中,判决变量与判决门限 V T V_T VT进行比较,就可以得到恢复的信息比特 b ^ n \hat b_n b^n。下面,我们分别讨论双极性和单极性两种情况。

2.2 双极性系统误码率

2.2.1 判决变量的概率密度函数

  下面我们来对双极性系统误码率进行分析。由于 y ( t ) = s ( t ) + n ( t ) y(t)=s(t)+n(t) y(t)=s(t)+n(t),我们考虑当前码元 [ 0 , T s ] [0,T_s] [0,Ts],通过抽样,在码元波形的 t 0 t_0 t0时刻抽出一个随机变量 y y y作为判决变量,即
y = y ( t 0 ) = s ( t 0 ) + n ( t 0 ) , 0 ≤ t ≤ T s , (7) \tag{7} y=y(t_0)=s(t_0)+n(t_0),\quad 0\le t\le T_s, y=y(t0)=s(t0)+n(t0),0tTs,(7)由于为双极性信号,从图3(a)-( c)可以得到
y = { A + n , 发 " 1 " − A + n , 发 " 0 " (8) \tag{8} y=\left\{\begin{aligned} A+n,\quad 发"1"\\ -A+n, \quad 发"0" \end{aligned}\right. y={A+n,"1"A+n,"0"(8)其中, n = n ( t 0 ) n=n(t_0) n=n(t0)为随机过程 n ( t ) n(t) n(t)上的一个随机变量,且有 n ∼ N ( 0 , σ n 2 ) n\sim {\mathcal N}(0,\sigma_n^2) nN(0,σn2),从图2(c ),我们已知其功率为 σ n 2 = N 0 B \sigma_n^2=N_0B σn2=N0B。因此,我们可以得到判决变量 y y y的概率分布为:
发 " 1 " : y ∼ N ( A , σ n 2 ) 发 " 0 " : y ∼ N ( − A , σ n 2 ) (9) \tag{9} \begin{aligned} 发"1":&y\sim {\mathcal N}(A,\sigma_n^2)\\ 发"0":&y\sim {\mathcal N}(-A,\sigma_n^2) \end{aligned} "1""0"yN(A,σn2)yN(A,σn2)(9)因此,我们可以得到发"0"以及发"1"时,判决变量的条件概率密度函数分别为
p ( y ∣ " 0 " ) = 1 2 π σ n 2 e − ( y + A ) 2 2 σ n 2 p ( y ∣ " 1 " ) = 1 2 π σ n 2 e − ( y − A ) 2 2 σ n 2 (10) \tag{10} p(y|"0")=\frac{1}{\sqrt{2\pi \sigma_n^2}}e^{-\frac{(y+A)^2}{2\sigma_n^2}}\\ p(y|"1")=\frac{1}{\sqrt{2\pi \sigma_n^2}}e^{-\frac{(y-A)^2}{2\sigma_n^2}} p(y"0")=2πσn2 1e2σn2(y+A)2p(y"1")=2πσn2 1e2σn2(yA)2(10)其示意图如图4(a)所示,可以看出,两条概率密度函数曲线形状相同,均值分别为 − A -A A A A A

在这里插入图片描述

图4 双/单极性判决变量条件概率密度函数示意图

2.2.2 错误概率推导

  下面我们来求错误概率。图4(a)中, V T V_T VT为判决门限,判决准则如下:
b ^ n = { 1 , y > V T 0 , y ≤ V T (11) \tag{11} \hat b_n=\left\{\begin{aligned} 1,\quad y>V_T\\ 0, \quad y\le V_T \end{aligned}\right. b^n={1,y>VT0,yVT(11)因此,如果发送的 b n = 1 b_n=1 bn=1,但 y ≤ V T y\le V_T yVT,则出现误码。显然,从图4(a)来看,阴影部分的面积, P r ( y ≤ V T ∣ " 1 " ) {\rm Pr}(y\le V_T|"1") Pr(yVT"1"),也就是发送 b n = 1 b_n=1 bn=1时的错误概率 P e 1 P_{e1} Pe1,它可以计算如下:
P e 1 = P r ( y ≤ V T ∣ " 1 " ) = ∫ − ∞ V T p ( y ∣ " 1 " ) d y = ∫ − ∞ V T 1 2 π σ n 2 e − ( y − A ) 2 2 σ n 2 d y = ∫ − ∞ V T 1 2 π σ n 2 e − [ ( y − A ) / σ n ] 2 2 d ( y − A σ n ) = ∫ − ∞ V T − A σ n 1 2 π e − z 2 2 d z = ∫ A − V T σ n ∞ 1 2 π e − z 2 2 d z = Q ( A − V T σ n ) (12) \tag{12} \begin{aligned} P_{e1}={\rm Pr}(y\le V_T|"1")&=\int_{-\infty}^{V_T}p(y|"1")dy\\ &=\int_{-\infty}^{V_T}\frac{1}{\sqrt{2\pi \sigma_n^2}}e^{-\frac{(y-A)^2}{2\sigma_n^2}}dy\\ &=\int_{-\infty}^{V_T}\frac{1}{\sqrt{2\pi \sigma_n^2}}e^{-\frac{[(y-A)/\sigma_n]^2}{2}}d(\frac{y-A}{\sigma_n})\\ &=\int_{-\infty}^{\frac{V_T-A}{\sigma_n}}\frac{1}{\sqrt{2\pi }}e^{-\frac{z^2}{2}}dz\\ &=\int_{\frac{A-V_T}{\sigma_n}}^{\infty}\frac{1}{\sqrt{2\pi }}e^{-\frac{z^2}{2}}dz\\ &=Q{\Large(} \frac{A-V_T}{\sigma_n}{\Large)} \end{aligned} Pe1=Pr(yVT"1")=VTp(y"1")dy=VT2πσn2 1e2σn2(yA)2dy=VT2πσn2 1e2[(yA)/σn]2d(σnyA)=σnVTA2π 1e2z2dz=σnAVT2π 1e2z2dz=Q(σnAVT)(12)因此,图4(1)中红色阴影部分面积就为发"1"时候的错误概率。
  以后再进行误码率计算的时候,为了简便起见,有个简单方法求这一类高斯拖尾的面积。即Q函数中,分母为噪声的标准偏差 σ n \sigma_n σn,而分子为判决变量 y y y的均值与判决门限 V T V_T VT的差值的绝对值。这里由于均值为 A A A,因此其差值绝对值为 A − V T A-V_T AVT
  我们来看看发“0”时的错误概率,由于噪声的标准偏差也为 σ n \sigma_n σn,判决变量 y y y的均值 − A -A A与判决门限 V T V_T VT的差值的绝对值为 A + V T A+V_T A+VT,因此可以得到
P e 0 = P r ( y > V T ∣ " 0 " ) = ∫ V T ∞ p ( y ∣ " 0 " ) d y = Q ( A + V T σ n ) . (13) \tag{13} P_{e0}={\rm Pr}(y> V_T|"0")=\int_{V_T}^{\infty}p(y|"0")dy=Q{\Large(} \frac{A+V_T}{\sigma_n}{\Large)}. Pe0=Pr(y>VT"0")=VTp(y"0")dy=Q(σnA+VT).(13)这样我们就可以求得平均错误概率为
P e = P 0 P e 0 + P 1 P e 1 , (14) \tag{14} P_e=P_0P_{e0}+P_1P_{e1}, Pe=P0Pe0+P1Pe1,(14)其中 P 0 P_0 P0 P 1 P_1 P1分别为“0”和“1”的发送概率。

2.2.3 最佳判决门限

  考虑双极性码,图(a)(b)(c )分别表示判决门限等于0、大于0和小于0的情况,而红色和橙色阴影部分面积,分别等于 P e 1 P_{e1} Pe1 P e 0 P_{e0} Pe0。根据(12-14),可以得到误码率为
P e = P 0 Q ( A + V T σ n ) + P 1 Q ( A − V T σ n ) . (15) \tag{15} P_{e}=P_0Q{\Large(} \frac{A+V_T}{\sigma_n}{\Large)}+P_1Q{\Large(} \frac{A-V_T}{\sigma_n}{\Large)}. Pe=P0Q(σnA+VT)+P1Q(σnAVT).(15)不难看出,判决门限 V T V_T VT的取值,会影响误码率的大小。这一点,从图5中不难看出。显然,如果发送概率 P 0 = P 1 P_0=P_1 P0=P1,则图5(a)对应的 P e P_e Pe最小;但如果 P 0 > P 1 P_0>P_1 P0>P1,我们当然希望 P e 0 P_{e0} Pe0能更小;而 P 0 < P 1 P_0<P_1 P0<P1,我们当然希望 P e 1 P_{e1} Pe1能更小。大家可以思考下,这两种发送概率不相等的情况,应该对应图5(b)还是图5(c )呢?
  根据《附录10.A》,可知对于双极性码,最佳判决门限为
V T ∗ = σ 0 2 A ln ⁡ P 0 P 1 . (16) \tag{16} V_T^*=\frac{\sigma_0^2}{A}\ln \frac{P_0}{P_1}. VT=Aσ02lnP1P0.(16)

图5(b)中, P e 1 > P e 0 P_{e1}>P_{e0} Pe1>Pe0,因此对应于 P 1 < P 0 P_1<P_0 P1<P0的情况。这一点从(16)也可以推得,由于 P 1 < P 0 P_1<P_0 P1<P0, V T ∗ > 0 V_T^*>0 VT>0

在这里插入图片描述

图5 不同判决门限时错误概率示意图

  根据(16)可知,若发送概率 P 0 = P 1 P_0=P_1 P0=P1,有 V T ∗ = 0 V_T^*=0 VT=0,代入(15)得到错误概率为
P e = Q ( A σ n ) = Q ( A 2 σ n 2 ) = Q ( E s N 0 B T s ) , (15) \tag{15} P_{e}=Q{\Large(} \frac{A}{\sigma_n}{\Large)}=Q{\Large(} \sqrt{\frac{A^2}{\sigma_n^2}}{\Large)}=Q{\Large(} \sqrt{\frac{E_s}{N_0BT_s}}{\Large)}, Pe=Q(σnA)=Q(σn2A2 )=Q(N0BTsEs ),(15)其中, E s = A 2 T s E_s=A^2T_s Es=A2Ts为双极性信号的平均信号能量, σ n 2 = n 0 B \sigma_n^2=n_0B σn2=n0B为低通滤波器输出的噪声功率,B为低通滤波器带宽。

2.3 单极性系统误码率

2.3.1 判决变量的概率密度函数

  下面我们分析单极性系统误码率。由于为单极性信号,从图3(a)-( c),可以得到判决变量为
y = { A + n , 发 " 1 " n , 发 " 0 " (16) \tag{16} y=\left\{\begin{aligned} A+n,\quad 发"1"\\ n, \quad 发"0" \end{aligned}\right. y={A+n,"1"n,"0"(16)其中, n = n ( t 0 ) n=n(t_0) n=n(t0)为随机过程 n ( t ) n(t) n(t)上的一个随机变量,且有 n ∼ N ( 0 , σ n 2 ) n\sim {\mathcal N}(0,\sigma_n^2) nN(0,σn2) σ n 2 = N 0 B \sigma_n^2=N_0B σn2=N0B。因此,我们可以得到判决变量 y y y的概率分布为:
发 " 1 " : y ∼ N ( A , σ n 2 ) 发 " 0 " : y ∼ N ( 0 , σ n 2 ) (17) \tag{17} \begin{aligned} 发"1":&y\sim {\mathcal N}(A,\sigma_n^2)\\ 发"0":&y\sim {\mathcal N}(0,\sigma_n^2) \end{aligned} "1""0"yN(A,σn2)yN(0,σn2)(17)因此,我们可以得到发"0"以及发"1"时,判决变量的条件概率密度函数分别为
p ( y ∣ " 0 " ) = 1 2 π σ n 2 e − y 2 2 σ n 2 p ( y ∣ " 1 " ) = 1 2 π σ n 2 e − ( y − A ) 2 2 σ n 2 (18) \tag{18} \begin{aligned} p(y|"0")&=\frac{1}{\sqrt{2\pi \sigma_n^2}}e^{-\frac{y^2}{2\sigma_n^2}}\\ p(y|"1")&=\frac{1}{\sqrt{2\pi \sigma_n^2}}e^{-\frac{(y-A)^2}{2\sigma_n^2}} \end{aligned} p(y"0")p(y"1")=2πσn2 1e2σn2y2=2πσn2 1e2σn2(yA)2(18)其示意图如图4(b)所示,可以看出,两条概率密度函数曲线形状相同,均值分别为 0 0 0 A A A

2.3.2 错误概率推导

  下面我们来求错误概率。图4(b)中, V T V_T VT为判决门限,判决准则如下:
b ^ n = { 1 , y > V T 0 , y ≤ V T (19) \tag{19} \hat b_n=\left\{\begin{aligned} 1,\quad y>V_T\\ 0, \quad y\le V_T \end{aligned}\right. b^n={1,y>VT0,yVT(19)因此,如果发送的 b n = 1 b_n=1 bn=1,但 y ≤ V T y\le V_T yVT,则出现误码。显然,从图4(b)来看,阴影部分的面积, P r ( y ≤ V T ∣ " 1 " ) {\rm Pr}(y\le V_T|"1") Pr(yVT"1"),也就是发送 b n = 1 b_n=1 bn=1时的错误概率 P e 1 P_{e1} Pe1,根据双极性部分提到的简单推导方法,可以得到为
P e 1 = Q ( A − V T σ n ) P e 0 = Q ( V T σ n ) (20) \tag{20} \begin{aligned} P_{e1}&=Q{\Large(} \frac{A-V_T}{\sigma_n}{\Large)}\\ P_{e0}&=Q{\Large(} \frac{V_T}{\sigma_n}{\Large)} \end{aligned} Pe1Pe0=Q(σnAVT)=Q(σnVT)(20)这样我们就可以求得平均错误概率为
P e = P 0 Q ( V T σ n ) + P 1 Q ( A − V T σ n ) . (21) \tag{21} P_{e}=P_0Q{\Large(} \frac{V_T}{\sigma_n}{\Large)}+P_1Q{\Large(} \frac{A-V_T}{\sigma_n}{\Large)}. Pe=P0Q(σnVT)+P1Q(σnAVT).(21)根据《附录10.A》,可知对于单极性码,最佳判决门限为
V T ∗ = A 2 + σ 0 2 A ln ⁡ P 0 P 1 . (22) \tag{22} V_T^*=\frac{A}{2}+\frac{\sigma_0^2}{A}\ln \frac{P_0}{P_1}. VT=2A+Aσ02lnP1P0.(22)若发送概率 P 0 = P 1 P_0=P_1 P0=P1,有 V T ∗ = A 2 V_T^*=\frac{A}{2} VT=2A,代入(21)得到错误概率为
P e = Q ( A 2 σ n ) = Q ( A 2 4 σ n 2 ) = Q ( E s 2 N 0 B T s ) , (23) \tag{23} P_{e}=Q{\Large(} \frac{A}{2\sigma_n}{\Large)}=Q{\Large(} \sqrt{\frac{A^2}{4\sigma_n^2}}{\Large)}=Q{\Large(} \sqrt{\frac{E_s}{2N_0BT_s}}{\Large)}, Pe=Q(2σnA)=Q(4σn2A2 )=Q(2N0BTsEs ),(23)其中, E s = A 2 T s 2 E_s=\frac{A^2T_s}{2} Es=2A2Ts为单极性信号的平均信号能量, σ n 2 = n 0 B \sigma_n^2=n_0B σn2=n0B为低通滤波器输出的噪声功率,B为低通滤波器带宽。

  这里一定要注意,如果幅度 A A A相等,图3中双极性信号和单极性信号的平均符号能量是不相等的。
  对于双极性信号,其两个信号 s 1 ( t ) s_1(t) s1(t) s 2 ( t ) s_2(t) s2(t)的能量相等,即 E 1 = E 2 = A 2 T s E_1=E_2=A^2T_s E1=E2=A2Ts,因此0、1等概情况下的平均信号能量为 E s = E 1 + E 2 2 = A 2 T s E_s=\frac{E_1+E_2}{2}=A^2T_s Es=2E1+E2=A2Ts
  对于单极性信号,则 s 1 ( t ) s_1(t) s1(t) s 2 ( t ) s_2(t) s2(t)的能量不相等,其中 E 1 = A 2 T s E_1=A^2T_s E1=A2Ts E 2 = 0 E_2=0 E2=0,因此0、1等概情况下的平均信号能量为 E s = E 1 + E 2 2 = A 2 T s 2 E_s=\frac{E_1+E_2}{2}=\frac{A^2T_s}{2} Es=2E1+E2=2A2Ts

2.4 AMI系统误码率分析

  下面我们分析AMI系统误码率。由于为单极性信号,从图3(a)-( c),可以得到判决变量为
y = { A + n , 发 " 1 " − A + n , 发 " 1 " n , 发 " 0 " (24) \tag{24} y=\left\{\begin{aligned} &A+n,&\quad 发"1"\\ &-A+n,&\quad 发"1"\\ &n, &\quad 发"0" \end{aligned}\right. y=A+n,A+n,n,"1""1""0"(24)其中, n ∼ N ( 0 , σ n 2 ) n\sim {\mathcal N}(0,\sigma_n^2) nN(0,σn2) σ n 2 = N 0 B \sigma_n^2=N_0B σn2=N0B。因此,我们可以得到判决变量 y y y的概率分布为:
发 " 1 " , + A : y ∼ N ( A , σ n 2 ) 发 " 1 " , − A : y ∼ N ( − A , σ n 2 ) 发 " 0 " : y ∼ N ( 0 , σ n 2 ) (25) \tag{25} \begin{aligned} 发"1",+A:&y\sim {\mathcal N}(A,\sigma_n^2)\\ 发"1",-A:&y\sim {\mathcal N}(-A,\sigma_n^2)\\ 发"0":&y\sim {\mathcal N}(0,\sigma_n^2) \end{aligned} "1",+A"1",A"0"yN(A,σn2)yN(A,σn2)yN(0,σn2)(25)因此,我们可以得到发"0"以及发"1"时,判决变量的条件概率密度函数分别为
p ( y ∣ " 0 " ) = 1 2 π σ n 2 e − y 2 2 σ n 2 p ( y ∣ " 1 " , + A ) = 1 2 π σ n 2 e − ( y − A ) 2 2 σ n 2 p ( y ∣ " 1 " , − A ) = 1 2 π σ n 2 e − ( y + A ) 2 2 σ n 2 (26) \tag{26} \begin{aligned} p(y|"0")&=\frac{1}{\sqrt{2\pi \sigma_n^2}}e^{-\frac{y^2}{2\sigma_n^2}}\\ p(y|"1",+A)&=\frac{1}{\sqrt{2\pi \sigma_n^2}}e^{-\frac{(y-A)^2}{2\sigma_n^2}}\\ p(y|"1",-A)&=\frac{1}{\sqrt{2\pi \sigma_n^2}}e^{-\frac{(y+A)^2}{2\sigma_n^2}} \end{aligned} p(y"0")p(y"1",+A)p(y"1",A)=2πσn2 1e2σn2y2=2πσn2 1e2σn2(yA)2=2πσn2 1e2σn2(y+A)2(26)其示意图如图6所示。
在这里插入图片描述

图6 AMI码判决变量概率密度函数

  下面我们来求错误概率。由于有 A A A − A -A A和0三种电平,因此有两种判决门限。可以求得"0"、"1"等概情况下的判决准则如下:
b ^ n = { 0 , − A 2 ≤ y < A 2 1 , o t h e r w i s e (27) \tag{27} \hat b_n=\left\{\begin{aligned} 0, &\quad -\frac{A}{2}\le y< \frac{A}{2}\\ 1, &\quad {\rm otherwise} \end{aligned}\right. b^n=0,1,2Ay<2Aotherwise(27)因此,从图(6)可以得到为
P e 1 = Q ( A 2 σ n ) − Q ( 3 A 2 σ n ) P e 0 = 2 Q ( A 2 σ n ) (28) \tag{28} \begin{aligned} P_{e1}&=Q{\Large(} \frac{A}{2\sigma_n}{\Large)}-Q{\Large(} \frac{3A}{2\sigma_n}{\Large)}\\ P_{e0}&=2Q{\Large(} \frac{A}{2\sigma_n}{\Large)} \end{aligned} Pe1Pe0=Q(2σnA)Q(2σn3A)=2Q(2σnA)(28)这样我们就可以求得平均错误概率为
P e = 3 2 Q ( A 2 σ n ) − 1 2 Q ( 3 A 2 σ n ) . (29) \tag{29} P_{e}=\frac{3}{2}Q{\Large(} \frac{A}{2\sigma_n}{\Large)}-\frac{1}{2}Q{\Large(} \frac{3A}{2\sigma_n}{\Large)}. Pe=23Q(2σnA)21Q(2σn3A).(29)

2.5 单极性码、双极性码、AMI码误码性能比较

  根据(15)、(23)、(29),可以得到当接收滤波器为低通滤波器,发送信号为方波,且假设接收滤波器对接收信号波形没有影响的情况下,单极性码、双极性码、AMI码错误概率如表1所示。

表1 单极性码、双极性码、AMI码错误概率
教程标题错误概率
单极性码 P e = Q ( A 2 σ n ) P_e=Q(\frac{A}{2\sigma_n}) Pe=Q(2σnA)
双极性码 P e = Q ( A σ n ) P_e=Q(\frac{A}{\sigma_n}) Pe=Q(σnA)
AMI码 P e = 3 2 Q ( A 2 σ n ) − 1 2 Q ( 3 A 2 σ n ) P_e=\frac{3}{2}Q(\frac{A}{2\sigma_n})-\frac{1}{2}Q(\frac{3A}{2\sigma_n}) Pe=23Q(2σnA)21Q(2σn3A)

  图7所示为单极性码、双极性码、AMI码错误概率的错误概率曲线。其中横坐标为 ( A σ n ) 2 (\frac{A}{\sigma_n})^2 (σnA)2的对数值,其中 A 2 A^2 A2为抽样点处的瞬时功率, σ n 2 = N 0 B \sigma_n^2=N_0B σn2=N0B为噪声的平均功率;纵坐标为错误概率,注意我们一般用10的负数次幂的来表示。这主要是由于误码率一定是小于1的,而且往往非常小,比如 1 0 − 4 10^{-4} 104 1 0 − 6 10^{-6} 106等。如果用线性坐标表示,就无法显示其差异。
在这里插入图片描述

图7 单极性码、双极性码、AMI码误码率曲线
  • 2
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 锁相环(PLL)系统是一种广泛用于电子通信和控制系统中的反馈控制系统。它由鉴相器(PD)、压控荡器(VCO)和低通滤波器LPF)等组成。 鉴相器(PD)是PLL系统的核心部件之一,用于比较输入信号与参考信号之间的相位差。鉴相器将输入信号与参考信号混合,并输出相位误差信号。鉴相器可根据相位误差信号的大小和方向,调整VCO的频率,使其与参考信号保持同步。 压控荡器(VCO)是PLL系统中的频率控制元件。VCO通过改变其输出信号的频率来跟踪输入信号的频率。当鉴相器检测到相位误差,VCO将根据相位误差信号的大小和方向,调整输出频率,以便和参考信号保持同步。VCO的输出频率受到控制电压的影响,这个控制电压是由LPF输出的平均相位误差信号。 低通滤波器LPF)主要用于滤除VCO输出的高频噪声,并提供稳定的控制电压给VCO。LPF通过平滑相位误差信号,将快速变化的高频成分滤除,只保留其直流分量。这样可以获得更稳定的控制信号给VCO,从而使系统更精确地跟踪和锁定输入信号的频率和相位。 总之,PLL系统通过鉴相器检测相位误差,通过压控荡器调整频率,通过低通滤波器提供稳定的控制信号,实现了输入信号与参考信号的频率和相位同步。它在许多应用中具有重要的作用,例如通信系统中的钟恢复和频率合成,以及控制系统中的频率跟踪和调整。 ### 回答2: 锁相环(Phase Locked Loop, PLL)系统是一种电路系统,用于对输入信号进行频率捕获、相位比较和频率合成的功能。它由鉴相器(Phase Detector, PD)、压控荡器(Voltage Controlled Oscillator, VCO)和低通滤波器(Low Pass Filter, LPF)组成。 鉴相器(PD)是锁相环系统的关键部分,用于比较输入信号和参考信号的相位差,并产生一个相位误差信号。它可以采用不同的结构,常见的包括边沿鉴相器和乘法鉴相器。边沿鉴相器在输入信号和参考信号边沿发生变化产生脉冲,而乘法鉴相器则将输入信号与参考信号进行乘法运算得到一个直流误差值。 压控荡器(VCO)是锁相环系统的频率控制元件,它的输出频率可以通过调节输入的控制电压进行调节。当鉴相器产生的相位误差信号经过低通滤波器LPF)滤波后,得到一个直流误差值,该误差值被放大并作为输入控制电压给VCO,从而使VCO的输出频率跟随输入信号的频率变化,实现频率合成功能。 低通滤波器LPF)用于过滤鉴相器输出的误差信号中的高频成分,只保留其低频部分。这是因为锁相环系统往往需要跟踪输入信号的低频部分,高频成分被过滤掉,从而减少系统在高频部分的干扰,提高系统的稳定性和跟踪能力。 综上所述,锁相环系统利用鉴相器对输入信号和参考信号的相位进行比较,产生相位误差信号;通过压控荡器对相位误差进行控制,实现频率合成功能;通过低通滤波器对相位误差进行滤波,提高系统的稳定性和跟踪能力。锁相环系统在通信、测量、控制等领域有广泛的应用。 ### 回答3: 锁相环(Phase-Locked Loop,PLL)系统是一种常见的电子控制系统,主要用于提供稳定的频率和相位锁定功能。该系统由多个组件组成,其中包括鉴相器(Phase Detector,PD)、压控荡器(Voltage-Controlled Oscillator,VCO)和低通滤波器(Low-Pass Filter,LPF)等部分。 鉴相器是PLL系统的核心组件之一。它负责比较输入信号的相位与VCO输出信号的相位差,并将该相位差信息转换为电压信号输出。鉴相器常用的有二相鉴相器和多相鉴相器,其作用是实监测和调节输入信号与VCO输出信号之间的相位差,以实现相位锁定。 压控荡器是PLL系统的另一个重要组成部分。它的作用是根据鉴相器输出的电压信号,通过改变输出信号的频率,以减小输入信号与VCO输出信号之间的相位差。VCO的输出频率受到输入电压的调节,通过控制其输入电压,可以实现对输出频率的精确调节。 低通滤波器在PLL系统中起到平滑输出信号的作用。它主要用于去除由VCO频率变化引起的高频成分,并滤除噪声干扰,使得输出信号的频率更加稳定和准确。 整个PLL系统的工作原理是:首先,鉴相器通过比较输入信号的相位与VCO输出信号的相位差,产生一个电压差信号。然后,该电压差信号经过低通滤波器的处理,获得一个平滑的控制电压信号。最后,这个电压信号输入到VCO中,调节VCO的输出频率,使得输入信号与VCO输出信号的相位差逐渐趋于零,从而实现了频率和相位的锁定功能。 总结:锁相环(PLL)系统由鉴相器(PD)、压控荡器(VCO)和低通滤波器LPF)等多个组件组成,用于提供稳定的频率和相位锁定功能。鉴相器用于监测和调节输入信号与VCO输出信号之间的相位差,压控荡器通过调节输出信号的频率来减小相位差,低通滤波器平滑输出信号。整个系统实现了频率和相位的锁定功能。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值