凸函数成立的一阶与二阶条件

本文深入探讨了凸函数的一阶和二阶条件。通过定理1和定理2,详细证明了函数为凸函数的充要条件,涉及一阶导数和Hessian矩阵的性质。这些条件对于理解和应用凸优化至关重要。
摘要由CSDN通过智能技术生成

   本文主要是针对凸函数成立的一阶和二阶充要条件进行描述和简单证明。

1、凸函数成立的一阶条件

【定理1】对于函数 J : Ω → R J:\Omega \rightarrow \mathbb{R} J:ΩR J J J为凸函数,当且仅当 ∀ x , y ∈ Ω \forall \bf{x},\bf{y}\in \Omega x,yΩ,有
J ( y ) ≥ J ( x ) + ▽ J ( x ) T ( y − x ) . J({\bf y})\ge J({\bf x})+\triangledown J({\bf x})^{\rm T}(\bf{y}-\bf{x}). J(y)J(x)+J(x)T(yx).

【证明】
(1)必要性证明。
z = t y + ( 1 − t ) x = x + t ( y − x ) {\bf z}=t {\bf y}+(1-t){\bf x}={\bf x}+t(\bf y-x) z=ty+(1t)x=x+t(yx),由于 J J J为凸函数,因此
J [ x + t ( y − x ) ] ≤ t J ( y ) + ( 1 − t ) J ( x ) , J[{\bf x}+t({\bf y-x})]\le tJ({\bf y})+(1-t)J({\bf x}), J[x+t(yx)]tJ(y)+(1t)J(x),进一步有
J ( y ) ≥ J ( x ) + lim ⁡ t → 0 J [ x + t ( y − x ) ] − J ( x ) t , J({\bf y})\ge J({\bf x})+\lim_{t\rightarrow 0}\frac{J[{\bf x}+t({\bf y-x})] -J({\bf x})}{t}, J(y)J(x)+t

  • 15
    点赞
  • 34
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值