多配送中心VRP建模与求解—基于粒子群算法

多配送中心VRP建模与求解—基于粒子群算法

1 多配送中心VRP

多配送中心的车辆路径问题是 经典VRP 的扩展,它研究的是有多个车场同时对若干个客户进行服务,每个客户都有一定的货物需求。所要确定的是客户点由哪个配送中心服务,并对服务时的车辆路径进行优化,以便达到成本最低、时间最短等目标。

2 课题场景设计

2.1 场景

单向:纯取货/纯送货;
多配送中心:存在多个配送中心/车场;
单车型:只考虑一种车型,
需求不可拆分:客户需求只能有一辆车满足;
车辆封闭:完成配送任务的车辆需回到配送中心;
车辆充足:不限制车辆数量,即配送车辆需求均能满足;
非满载:任意客户点的需求量小于车辆最大载重;

2.2 要求

优化目标:最小化车辆启动成本和车辆行驶成本之和;
约束条件:车辆行驶距离约束,重量约束;
已知信息:配送中心位置、客户点位置、客户点需求、车辆最大载重、车辆最大行驶距离、车辆启动成本、车辆单位距离行驶成本;

3 数学模型

3.1 符号说明

在这里插入图片描述

3.2 数学模型

在这里插入图片描述

4 粒子群算法设计

4.1 算法设计

多配送中心VRP问题的求解,要比CVRP难度大得多,目前对于该问题的求解大多拆分为两个阶段进行:①首先先将客户点分配给配送中心,转化为单配送中心问题;②在对每一个配送中心的路径进行优化。
本文也采用两阶段方法进行求解:
①将客户点分配给最近的配送中心;
②在对分配好的客户点配送中心集合进行路线优化。
粒子群算法相关设计见【CVRP建模与求解-基于粒子群算法(python实现)】,本算法在它的基础上进行修改以适应新场景的求解。

4.2 python程序设计

# -*- coding: utf-8 -*-
import math
import random
import pandas as pd
import matplotlib.pyplot as plt
from matplotlib.pylab import mpl
mpl.rcParams['font.sans-serif'] = ['SimHei']  # 添加这条可以让图形显示中文


def calDistance(CityCoordinates):
    ''' 
    计算城市间距离
    输入:CityCoordinates-城市坐标;
    输出:城市间距离矩阵-dis_matrix
    '''
    dis_matrix = pd.DataFrame(data=None,columns=range(len(CityCoordinates)),index=range(len(CityCoordinates)))
    for i in range(len(CityCoordinates)):
        xi,yi = CityCoordinates[i][0],CityCoordinates[i][1]
        for j in range(len(CityCoordinates)):
            xj,yj = CityCoordinates[j][0],CityCoordinates[j][1]
            dis_matrix.iloc[i,j] = round(math.sqrt((xi-xj)**2+(yi-yj)**2),2)
    return dis_matrix


def assign_distribution_center(dis_matrix,DC,C):
    '''
    Parameters:
    dis_matrix : 距离矩阵
    DC : 配送中心个数
    C : 客户点个数
    Returns:
    d-存储分配给配送中心的客户点,list最后嵌套list
    '''
    d = [[] for i in range(DC)]#存储分配的列表
    for i in range(DC,DC+C):
        d_i = [dis_matrix.loc[i,j] for j in range(DC)]#取出当前客户分别距离配送中心的距离
        min_dis_index = d_i.index(min(d_i))#取出最近的配送中心
        
        d[min_dis_index].append(i)#将客户点分配给配送中心
        
    return d


def greedy(CityCoordinates,dis_matrix,DC,certer_number):
    '''
    贪婪策略构造初始解
    输入:CityCoordinates-节点坐标,dis_matrix-距离矩阵
    输出:初始解-line
    '''
    #修改dis_matrix以适应求解需要
    dis_matrix = dis_matrix.iloc[[certer_number]+CityCoordinates,[certer_number]+CityCoordinates].astype('float64')#只取当前需要的配送中心和客户点
    for i in CityCoordinates:dis_matrix.loc[i,i]=math.pow(10,10)
    dis_matrix.loc[:,certer_number]=math.pow(10,10)#配送中心不在编码内
    line = []#初始化
    now_cus = random.sample(CityCoordinates,1)[0]#随机生成出发点
    line.append(now_cus)#添加当前城市到路径
    dis_matrix.loc[:,now_cus] = math.pow(10,10)#更新距离矩阵,已经过客户点不再被取出
    for i in range(1,len(CityCoordinates)):
        next_cus = dis_matrix.loc[now_cus,:].idxmin()#距离最近的城市
        line.append(next_cus)#添加进路径
        dis_matrix.loc[:,next_cus] = math.pow(10,10)#更新距离矩阵
        now_cus = next_cus#更新当前城市
    return line


def calFitness(birdPop,certer_number,Demand,dis_matrix,CAPACITY,DISTABCE,C0,C1):
    '''
    贪婪策略分配车辆(解码),计算路径距离(评价函数)
    输入:birdPop-路径,Demand-客户需求,dis_matrix-城市间距离矩阵,CAPACITY-车辆最大载重,DISTABCE-车辆最大行驶距离,C0-车辆启动成本,C1-车辆单位距离行驶成本;
    输出:birdPop_car-分车后路径,fits-适应度
    '''
    birdPop_car,fits = [],[]#初始化
    for j in range(len(birdPop)):
        bird = birdPop[j]
        lines = []#存储线路分车
        line = [certer_number]#每辆车服务客户点,起点是配送中心
        dis_sum = 0#线路距离
        dis,d = 0,0#当前客户距离前一个客户的距离、当前客户需求量
        i = 0#指向配送中心
        while i < len(bird):
            if line == [certer_number]:#车辆未分配客户点
                dis += dis_matrix.loc[certer_number,bird[i]]#记录距离
                line.append(bird[i])#为客户点分车
                d += Demand[bird[i]]#记录需求量
                i += 1#指向下一个客户点
            else:#已分配客户点则需判断车辆载重和行驶距离
                if (dis_matrix.loc[line[-1],bird[i]]+dis_matrix.loc[bird[i],certer_number]+ dis <= DISTABCE) & (d + Demand[bird[i]]<=CAPACITY ) :
                    dis += dis_matrix.loc[line[-1],bird[i]]
                    line.append(bird[i])
                    d += Demand[bird[i]]
                    i += 1
                else:
                    dis += dis_matrix.loc[line[-1],certer_number]#当前车辆装满
                    line.append(certer_number)
                    dis_sum += dis
                    lines.append(line)
                    #下一辆车
                    dis,d = 0,0
                    line = [certer_number]
        
        #最后一辆车
        dis += dis_matrix.loc[line[-1],certer_number]
        line.append(certer_number)
        dis_sum += dis
        lines.append(line)
        
        birdPop_car.append(lines)
        fits.append(round(C1*dis_sum+C0*len(lines),1))
        
    return birdPop_car,fits


def crossover(bird,pLine,gLine,w,c1,c2):
    '''
    采用顺序交叉方式;交叉的parent1为粒子本身,分别以w/(w+c1+c2),c1/(w+c1+c2),c2/(w+c1+c2)
    的概率接受粒子本身逆序、当前最优解、全局最优解作为parent2,只选择其中一个作为parent2;
    输入:bird-粒子,pLine-当前最优解,gLine-全局最优解,w-惯性因子,c1-自我认知因子,c2-社会认知因子;
    输出:交叉后的粒子-croBird;
    '''
    croBird = [None]*len(bird)#初始化
    parent1 = bird#选择parent1
    #选择parent2(轮盘赌操作)
    randNum = random.uniform(0, sum([w,c1,c2]))
    if randNum <= w:
        parent2 = [bird[i] for i in range(len(bird)-1,-1,-1)]#bird的逆序
    elif randNum <= w+c1:
        parent2 = pLine
    else:
        parent2 = gLine
    
    #parent1-> croBird
    start_pos = random.randint(0,len(parent1)-1)
    end_pos = random.randint(0,len(parent1)-1)
    if start_pos>end_pos:start_pos,end_pos = end_pos,start_pos
    croBird[start_pos:end_pos+1] = parent1[start_pos:end_pos+1].copy()
    
    # parent2 -> croBird
    list2 = list(range(0,start_pos))
    list1 = list(range(end_pos+1,len(parent2)))
    list_index = list1+list2#croBird从后往前填充
    j = -1
    for i in list_index:
        for j in range(j+1,len(parent2)+1):
            if parent2[j] not in croBird:
                croBird[i] = parent2[j]
                break 
                    
    return croBird


def draw_path(car_routes,CityCoordinates):
    '''
    #画路径图
    输入:line-路径,CityCoordinates-城市坐标;
    输出:路径图
    '''
    shape = ['o-','*-','^-']
    for i in range(len(car_routes)):
        route_i = car_routes[i]
        for route in route_i:
            x,y= [],[]
            for i in route:
                Coordinate = CityCoordinates[i]
                x.append(Coordinate[0])
                y.append(Coordinate[1])
            x.append(x[0])
            y.append(y[0])
            plt.plot(x, y,shape[i], alpha=0.8, linewidth=0.8)
    plt.xlabel('x')
    plt.ylabel('y')
    plt.show()


if __name__ == '__main__':
    #车辆参数
    CAPACITY = 120#车辆最大容量
    DISTABCE = 250#车辆最大行驶距离
    C0 = 30
    C1 = 1
    
    #PSO参数
    birdNum = 30#粒子数量
    w = 0.2#惯性因子
    c1 = 0.4#自我认知因子
    c2 = 0.4#社会认知因子
    pBest,pLine =0,[]#当前最优值、当前最优解,(自我认知部分)
    gBest,gLine = 0,[]#全局最优值、全局最优解,(社会认知部分)
    
    #其他参数
    iterMax = 100#迭代次数
    
    bestfit = [] #记录每代最优值
    DC = 3 #配送中心个数
    C = 31 #客户数量
    
    
    #读入数据,Customer0-2表示配送中心,3-33表示配送中心
    Customer = [(50, 25),(25,75),(75,75),(96, 24),(40, 5),(49, 8),(13, 7),(29, 89),(48, 30),(84, 39),(14, 47),(2, 24),(3, 82),(65, 10),(98, 52),(84, 25),(41, 69),(1, 65),
                       (51, 71),(75, 83),(29, 32),(83, 3),(50, 93),(80, 94),(5, 42),(62, 70),(31, 62),(19, 97),(91, 75),(27, 49),(23, 15),(20, 70),(85, 60),(98, 85)]
    Demand = [0,0,0,16,11,6,10,7,12,16,6,16,8,14,7,16,3,22,18,19,1,14,8,12,4,8,24,24,2,10,15,2,14,9]
    
    dis_matrix = calDistance(Customer)#计算城市间距离
    
    #分配客户点到配送中心
    distribution_centers = assign_distribution_center(dis_matrix,DC,C)
    bestfit_list,gLine_car_list = [],[]
    
    for certer_number in range(len(distribution_centers)):
        distribution_center = distribution_centers[certer_number]
        birdPop = [greedy(distribution_center,dis_matrix,DC,certer_number) for i in range(birdNum)]#贪婪算法构造初始解
        birdPop_car,fits = calFitness(birdPop,certer_number,Demand,dis_matrix,CAPACITY,DISTABCE,C0,C1)#分配车辆,计算种群适应度
        
        gBest = pBest = min(fits)#全局最优值、当前最优值
        gLine = pLine = birdPop[fits.index(min(fits))]#全局最优解、当前最优解
        gLine_car = pLine_car = birdPop_car[fits.index(min(fits))]
        
        iterI = 1#当前迭代次数
        while iterI <= iterMax:#迭代开始
            for i in range(birdNum):
                birdPop[i] = crossover(birdPop[i],pLine,gLine,w,c1,c2)
            
            birdPop_car,fits = calFitness(birdPop,certer_number,Demand,dis_matrix,CAPACITY,DISTABCE,C0,C1)#分配车辆,计算种群适应度
            pBest,pLine,pLine_car =  min(fits),birdPop[fits.index(min(fits))],birdPop_car[fits.index(min(fits))]
            if min(fits) <= gBest:
                gBest,gLine,gLine_car =  min(fits),birdPop[fits.index(min(fits))],birdPop_car[fits.index(min(fits))]
            
            iterI += 1#迭代计数加一
        
        bestfit_list.append(gBest)
        gLine_car_list.append(gLine_car)
        
    print(gLine_car_list)#路径顺序
    print("最优值:",sum(bestfit_list))
    draw_path(gLine_car_list,Customer)#画路径图

4.3 例子求解结果

采用3个配送中心和31个客户点的数据样例进行测试(见代码中的数据集)。运算结果最优解为761.2,路径为[[[0, 21, 13, 5, 4, 30, 6, 11, 20, 8, 0], [0, 9, 3, 15, 0]], [[1, 16, 22, 7, 27, 12, 17, 24, 10, 29, 26, 31, 1]], [[2, 18, 25, 32, 14, 28, 33, 23, 19, 2]]],路径图如下:
在这里插入图片描述
**【讨论】**先将客户点分配给最近的配送中心,再分别进行配送中心优化,这样求解的优点是计算量大大减少,且可获得一个可接受的解,但是缺点在于算法只能求解到局部最优解,比如在上面的数据集例子上,将橙色那条线路的几个点分配给上面红色线路,说不定可以获得更优的解。

记录学习过程,欢迎指正

  • 23
    点赞
  • 176
    收藏
    觉得还不错? 一键收藏
  • 14
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 14
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值