矩阵Matrix到欧拉角Euler转换

参考文献:

http://www.geometrictools.com/Documentation/EulerAngles.pdf

但是这里的公式不能直接用,原因是左右手系空间不同,我这边采用Direct3D默认的右手系,参考:

https://docs.microsoft.com/en-us/windows/win32/direct3d9/d3dxmatrixrotationyawpitchroll

所以需要自行推导右手系公式,已知各个轴旋转矩阵公式:

R(\theta_{x})=\begin{bmatrix} 1 & 0 & 0\\ 0 & cos(\theta_{x}) & sin(\theta_{x})\\ 0 & -sin(\theta_{x}) & cos(\theta_{x}) \end{bmatrix}R(\theta_{y})=\begin{bmatrix} cos(\theta_{y}) & 0 & -sin(\theta_{y})\\ 0 & 1 & 0\\ sin(\theta_{y}) & 0 & cos(\theta_{y}) \end{bmatrix}R(\theta_{z})=\begin{bmatrix} cos(\theta_{z}) & sin(\theta_{z}) & 0\\ -sin(\theta_{z}) & cos(\theta_{z}) & 0\\ 0 & 0 & 1 \end{bmatrix}

欧拉角变换顺序为YXZ,则先计算YX矩阵

R(\theta_{y})\cdot R(\theta_{x})=\begin{bmatrix} cos(\theta_{y}) & sin(\theta_{y})\cdot sin(\theta_{x}) & -sin(\theta_{y})\cdot cos(\theta_{x})\\ 0 & cos(\theta_{x}) & sin(\theta_{x})\\ sin(\theta_{y}) & -cos(\theta_{y})\cdot sin(\theta_{x}) & cos(\theta_{y})\cdot cos(\theta_{x}) \end{bmatrix}

最终YXZ矩阵

R(\theta_{y})\cdot R(\theta_{x})\cdot R(\theta_{z})=\begin{bmatrix} cos(\theta_{y})\cdot cos(\theta_{z})-sin(\theta_{y})\cdot sin(\theta_{x})\cdot sin(\theta_{z}) & cos(\theta_{y})\cdot sin(\theta_{z})+sin(\theta_{y})\cdot sin(\theta_{x})\cdot cos(\theta_{z}) & -sin(\theta_{y})\cdot cos(\theta_{x}))\\ -cos(\theta_{x})\cdot sin(\theta_{z}) & cos(\theta_{x})\cdot cos(\theta_{z}) & sin(\theta_{x})\\ sin(\theta_{y})\cdot cos(\theta_{z})+cos(\theta_{y})\cdot sin(\theta_{x})\cdot sin(\theta_{z}) & sin(\theta_{y})\cdot sin(\theta_{z})-cos(\theta_{y})\cdot sin(\theta_{x})\cdot cos(\theta_{z}) & cos(\theta_{y})\cdot cos(\theta_{x})) \end{bmatrix}

可以直接得知 sin(\theta_{x})=r12,即 \theta_{x}=arcsin(r12),然后需要分三种情况

  1. \theta_{x}\in \left (-\frac{\pi }{2}, \frac{\pi }{2}\right ),可知tan(\theta_{y})=\frac {sin(\theta_{y})\cdot cos(\theta_{x})}{cos(\theta_{y})\cdot cos(\theta_{x})},即 \theta_{y}=arctan(\frac {-r02} {r22}),同理 \theta_{z}=arctan(\frac {-r10} {r11})
  2. 当 \theta_{x}=\frac{\pi}{2},则 sin(\theta_{x})=1,YXZ矩阵可简化为
    R(\theta_{yxz})=\begin{bmatrix} cos(\theta_{y})\cdot cos(\theta_{z})-sin(\theta_{y})\cdot sin(\theta_{z}) & cos(\theta_{y})\cdot sin(\theta_{z})+sin(\theta_{y})\cdot cos(\theta_{z}) & 0\\ 0 & 0 & 1\\ sin(\theta_{y})\cdot cos(\theta_{z})+cos(\theta_{y})\cdot sin(\theta_{z}) & sin(\theta_{y})\cdot sin(\theta_{z})-cos(\theta_{y})\cdot cos(\theta_{z}) & 0 \end{bmatrix}
    根据两角和公式,可得
    R(\theta_{yxz})=\begin{bmatrix} cos(\theta_{y}+\theta_{z}) & sin(\theta_{y}+\theta_{z}) & 0\\ 0 & 0 & 1\\ sin(\theta_{y}+\theta_{z}) & -cos(\theta_{y}+\theta_{z}) & 0 \end{bmatrix},即 \theta_{y}+\theta_{z}=arctan(\frac {r01}{r00}),且结果不唯一
  3. 当 \theta_{x}=-\frac {\pi}{2},则 sin(\theta_{x})=-1,YXZ矩阵简化为
    R(\theta_{yxz})=\begin{bmatrix} cos(\theta_{y})\cdot cos(\theta_{z})+sin(\theta_{y})\cdot sin(\theta_{z}) & cos(\theta_{y})\cdot sin(\theta_{z})-sin(\theta_{y})\cdot cos(\theta_{z}) & 0\\ 0 & 0 & -1\\ sin(\theta_{y})\cdot cos(\theta_{z})-cos(\theta_{y})\cdot sin(\theta_{z}) & sin(\theta_{y})\cdot sin(\theta_{z})+cos(\theta_{y})\cdot cos(\theta_{z}) & 0 \end{bmatrix}
    可得
    R(\theta_{yxz})=\begin{bmatrix} cos(\theta_{y}-\theta_{z}) & -sin(\theta_{y}-\theta_{z}) & 0\\ 0 & 0 & -1\\ sin(\theta_{y}-\theta_{z}) & cos(\theta_{y}-\theta_{z}) & 0 \end{bmatrix},即 \theta_{y}-\theta_{z}=arctan(\frac {-r01}{r00})

基于以上思路,就能实现D3DXMATRIX到欧拉角的转换代码

D3DXVECTOR3* D3DXMatrixToEulerAngles(D3DXVECTOR3* pOut, const D3DXMATRIX* pM)
{
	if (pM->_23 < 0.999f) // some fudge for imprecision
	{
		if (pM->_23 > -0.999f) // some fudge for imprecision
		{
			pOut->x = asin(pM->_23);
			pOut->y = atan2(-pM->_13, pM->_33);
			pOut->z = atan2(-pM->_21, pM->_22);
		}
		else
		{
			// WARNING.  Not unique.  YA - ZA = atan2(-r01,r00)
			pOut->x = -D3DX_PI * 0.5f;
			pOut->y = atan2(-pM->_12, pM->_11);
			pOut->z = 0.0f;
		}
	}
	else
	{
		// WARNING.  Not unique.  YA + ZA = atan2(r01,r00)
		pOut->x = D3DX_PI * 0.5f;
		pOut->y = atan2(pM->_12, pM->_11);
		pOut->z = 0.0f;
	}
	return pOut;
}

 

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
对于计算机专业的学生而言,参加各类比赛能够带来多方面的益处,具体包括但不限于以下几点: 技能提升: 参与比赛促使学生深入学习和掌握计算机领域的专业知识与技能,如编程语言、算法设计、软件工程、网络安全等。 比赛通常涉及实际问题的解决,有助于将理论知识应用于实践中,增强问题解决能力。 实践经验: 大多数比赛都要参赛者设计并实现解决方案,这提供了宝贵的动手操作机会,有助于积累项目经验。 实践经验对于计算机专业的学生尤为重要,因为雇主往往更青睐有实际项目背景的候选人。 团队合作: 许多比赛鼓励团队协作,这有助于培养学生的团队精神、沟通技巧和领导能力。 团队合作还能促进学生之间的知识共享和思维碰撞,有助于形成更全面的解决方案。 职业发展: 获奖经历可以显著增强简历的吸引力,为职或继续深造提供有力支持。 某些比赛可能直接与企业合作,提供实习、工作机会或奖学金,为学生的职业生涯打开更多门路。 网络拓展: 比赛是结识同行业人才的好机会,可以帮助学生建立行业联系,这对于未来的职业发展非常重要。 奖金与荣誉: 许多比赛提供奖金或奖品,这不仅能给予学生经济上的奖励,还能增强其成就感和自信心。 荣誉证书或奖状可以证明学生的成就,对个人品牌建设有积极作用。 创新与研究: 参加比赛可以激发学生的创新思维,推动科研项目的开展,有时甚至能促成学术论文的发表。 个人成长: 在准备和参加比赛的过程中,学生将面临压力与挑战,这有助于培养良好的心理素质和抗压能力。 自我挑战和克服困难的经历对个人成长有着深远的影响。 综上所述,参加计算机领域的比赛对于学生来说是一个全面发展的平台,不仅可以提升专业技能,还能增强团队协作、沟通、解决问题的能力,并为未来的职业生涯奠定坚实的基础。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值