高阶导数简介

高阶导数

y = f ( x ) y=f(x) y=f(x),则 y ′ = d y d x y'=\dfrac{dy}{dx} y=dxdy y ′ ′ = d 2 y d x 2 y''=\dfrac{d^2y}{dx^2} y′′=dx2d2y

公式

[ u ± v ] ( n ) = u ( n ) ± v ( n ) [u\pm v]^{(n)}=u^{(n)}\pm v^{(n)} [u±v](n)=u(n)±v(n)
莱布尼茨公式: ( u v ) ( n ) = ∑ k = 0 n C n k u ( n − k ) v ( k ) (uv)^{(n)}=\sum\limits_{k=0}^n C_n^ku^{(n-k)}v^{(k)} (uv)(n)=k=0nCnku(nk)v(k)

注: f ( n ) ( x ) f^{(n)}(x) f(n)(x)表示对 f ( x ) f(x) f(x)求导 n n n

例题

例1

y = sin ⁡ x y=\sin x y=sinx,则 y ( 2017 ) = ‾ y^{(2017)}=\underline{\qquad} y(2017)=

解:
y ′ = cos ⁡ x y'=\cos x y=cosx
y ′ ′ = − sin ⁡ x y''=-\sin x y′′=sinx
y ′ ′ ′ = − cos ⁡ x y'''=-\cos x y′′′=cosx
y ( 4 ) = sin ⁡ x y^{(4)}=\sin x y(4)=sinx
y ( 5 ) = cos ⁡ x y^{(5)}=\cos x y(5)=cosx
∵ 2017 ÷ 4 = 504 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅   1 \because 2017\div4=504\cdot\cdot\cdot\cdot\cdot\cdot \ 1 2017÷4=504 1
∴ y ( 2017 ) = cos ⁡ x \therefore y^{(2017)}=\cos x y(2017)=cosx

例2

y = x ln ⁡ x y=x\ln x y=xlnx,求 y ( 10 ) y^{(10)} y(10)

解:
y ′ = ln ⁡ x + 1 , y ′ ′ = 1 x , y ′ ′ ′ = − 1 x 2 , y ( 4 ) = 2 1 x 3 , y ( 5 ) = − 2 × 3 1 x 4 y'=\ln x+1,y''=\dfrac 1x,y'''=-\dfrac {1}{x^2},y^{(4)}=2\dfrac{1}{x^3},y^{(5)}=-2\times3\dfrac{1}{x^4} y=lnx+1,y′′=x1,y′′′=x21,y(4)=2x31,y(5)=2×3x41
一般地: n > 2 n>2 n>2时, y ( n ) = ( − 1 ) n ( n − 2 ) ! 1 x n − 1 y^{(n)}=(-1)^n(n-2)!\dfrac{1}{x^{n-1}} y(n)=(1)n(n2)!xn11
所以 y ( 10 ) = 8 ! ⋅ 1 x 9 = 8 ! x 9 y^{(10)}=8!\cdot\dfrac{1}{x^9}=\dfrac{8!}{x^9} y(10)=8!x91=x98!

例3

f ( x ) = x 2 e x f(x)=x^2e^x f(x)=x2ex,则 f ( 4 ) ( 0 ) = ‾ f^{(4)}(0)=\underline{\qquad} f(4)(0)=

解:
( x 2 e x ) ( 4 ) (x^2e^x)^{(4)} (x2ex)(4)
= C 4 0 ( x 2 ) ( 4 ) e x + C 4 1 ( x 2 ) ( 3 ) e x + C 4 2 ( x 2 ) ′ ′ e x + C 4 3 ( x 2 ) ′ e x + C 4 4 x 2 e x =C_4^0(x^2)^{(4)}e^x+C_4^1(x^2)^{(3)}e^x+C_4^2(x^2)''e^x+C_4^3(x^2)'e^x+C_4^4x^2e^x =C40(x2)(4)ex+C41(x2)(3)ex+C42(x2)′′ex+C43(x2)ex+C44x2ex
= 1 × 0 × e x + 4 × 0 × e x + 6 × 2 × e x + 4 × 2 x ⋅ e x + 1 × x 2 e x =1\times 0\times e^x+4\times 0\times e^x+6\times 2\times e^x+4\times 2x\cdot e^x+1\times x^2e^x =1×0×ex+4×0×ex+6×2×ex+4×2xex+1×x2ex
= 12 e x + 8 x e x + x 2 e x =12e^x+8xe^x+x^2e^x =12ex+8xex+x2ex
所以 f ( 4 ) ( 0 ) = 12 f^{(4)}(0)=12 f(4)(0)=12

总结

在求高阶导数时,如果求导次数较大,则寻找普遍规律;如果求导次数较小,则用莱布尼茨公式

  • 5
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值