不定积分原理
原函数: 区间 I I I上, F ′ ( x ) = f ( x ) F'(x)=f(x) F′(x)=f(x)或 d F ( x ) = f ( x ) d x dF(x)=f(x)dx dF(x)=f(x)dx,则称 F ( x ) F(x) F(x)是 f ( x ) f(x) f(x)的原函数。
不定积分: 在去区间 I I I上, f ( x ) f(x) f(x)的全体原函数称为 f ( x ) f(x) f(x)的不定积分。记作 ∫ f ( x ) d x = F ( x ) + C \int f(x)dx=F(x)+C ∫f(x)dx=F(x)+C
原函数存在定理:
- 若 f ( x ) f(x) f(x)在区间 I I I上连续,则在区间 I I I上原函数一定存在
- 若 f ( x ) f(x) f(x)在区间 I I I上存在第一类间断点或无穷间断点,则原函数不存在
积不出来: ∫ 1 ln x d x , ∫ e ± x 2 d x , ∫ sin x x d x , ∫ cos x x d x , ∫ cos x 2 d x \int \dfrac{1}{\ln x}dx,\int e^{\pm x^2}dx,\int\dfrac{\sin x}{x}dx,\int\dfrac{\cos x}{x}dx,\int\cos x^2dx ∫lnx1dx,∫e±x2dx,∫xsinxdx,∫xcosxdx,∫cosx2dx
常用性质:
- ∫ f ′ ( x ) d x = f ( x ) + C \int f'(x)dx=f(x)+C ∫f′(x)dx=f(x)+C
- [ ∫ f ( x ) d x ] ′ = f ( x ) [\int f(x)dx]'=f(x) [∫f(x)dx]′=f(x)
- ∫ k f ( x ) d x = k ∫ f ( x ) d x \int kf(x)dx=k\int f(x)dx ∫kf(x)dx=k∫f(x)dx
- ∫ [ f ( x ) ± g ( x ) ] d x = ∫ f ( x ) d x ± ∫ g ( x ) d x \int [f(x)\pm g(x)]dx=\int f(x)dx\pm\int g(x)dx ∫[f(x)±g(x)]dx=∫f(x)dx±∫g(x)dx
例题
题1: 若 f ( x ) f(x) f(x)的导数是 sin x \sin x sinx,则 f ( x ) f(x) f(x)有一个原函数为 ( ) () ()。
A . 1 + sin x B . 1 − sin x C . 1 + cos x D . 1 − cos x A.1+\sin x \qquad B.1-\sin x \qquad C.1+\cos x \qquad D.1-\cos x A.1+sinxB.1−sinxC.1+cosxD.1−cosx
解析: f ′ ( x ) = sin x , F ′ ( x ) = f ( x ) f'(x)=\sin x,F'(x)=f(x) f′(x)=sinx,F′(x)=f(x),所以 F ′ ′ ( x ) = sin x F''(x)=\sin x F′′(x)=sinx,选 B . B. B.
题2: 设 F ( x ) F(x) F(x)是 sin x x \dfrac{\sin x}{x} xsinx的原函数,求 F ( x 2 ) F(x^2) F(x2)的导数。
解:
\qquad
因为
F
′
(
x
)
=
sin
x
x
F'(x)=\dfrac{\sin x}{x}
F′(x)=xsinx
\qquad 所以 ( F ( x 2 ) ) ′ = F ′ ( x 2 ) ⋅ 2 x = sin x 2 x 2 × 2 x = 2 sin x 2 x (F(x^2))'=F'(x^2)\cdot 2x=\dfrac{\sin x^2}{x^2}\times 2x=\dfrac{2\sin x^2}{x} (F(x2))′=F′(x2)⋅2x=x2sinx2×2x=x2sinx2