不定积分原理
原函数: 区间 I I I上, F ′ ( x ) = f ( x ) F'(x)=f(x) F′(x)=f(x)或 d F ( x ) = f ( x ) d x dF(x)=f(x)dx dF(x)=f(x)dx,则称 F ( x ) F(x) F(x)是 f ( x ) f(x) f(x)的原函数。
不定积分: 在去区间 I I I上, f ( x ) f(x) f(x)的全体原函数称为 f ( x ) f(x) f(x)的不定积分。记作 ∫ f ( x ) d x = F ( x ) + C \int f(x)dx=F(x)+C ∫f(x)dx=F(x)+C
原函数存在定理:
- 若 f ( x ) f(x) f(x)在区间 I I I上连续,则在区间 I I I上原函数一定存在
- 若 f ( x ) f(x) f(x)在区间 I I I上存在第一类间断点或无穷间断点,则原函数不存在
积不出来: ∫