2021牛客OI赛前集训营-提高组(第三场) T1变幻

该问题是一个关于数组处理的算法题,目标是找到一个数组中的山谷点(满足两边元素大于自身),并可以通过最多k次修改操作增加这些山谷点的值。使用动态规划求解,定义f[i][j]表示前i个数在进行了j次修改后的最大山谷点和。通过遍历数组,更新f[][]的状态,最后找出k次修改后的最大山谷点和。代码中展示了具体的实现过程。
摘要由CSDN通过智能技术生成

2021牛客OI赛前集训营-提高组(第三场)

题目大意

对于一个大小为 n n n的数组 a a a的任意一点 i i i,若满足 a i − 1 > a i a_{i-1}>a_i ai1>ai a i < a i + 1 a_i<a_{i+1} ai<ai+1,则称 i i i为山谷点。 1 1 1 n n n不可能为山谷点。

你最多可以修改最多 k k k次数组,每次可以将一个 a i a_i ai的值变小。

求所有山谷点的 a a a值之和的最大值。


题解

f i , j f_{i,j} fi,j表示最后一次修改在点 i i i或点 i i i之前,已经修改了 j j j次的前 i i i个数的最大的山谷点的和,那么

  • f i , j = f i − 1 , j f_{i,j}=f_{i-1,j} fi,j=fi1,j
  • 如果 a i a_i ai本来就是山谷点,则 f i , j = max ⁡ ( f i , j , f i − 2 , j + a i ) f_{i,j}=\max(f_{i,j},f_{i-2,j}+a_i) fi,j=max(fi,j,fi2,j+ai)
  • 如果 j ≥ 1 j\geq 1 j1,则 f i , j = max ⁡ ( f i , j , f i − 2 , j − 1 + min ⁡ ( a i − 1 , a i + 1 ) − 1 ) f_{i,j}=\max(f_{i,j},f_{i-2,j-1}+\min(a_{i-1},a_{i+1})-1) fi,j=max(fi,j,fi2,j1+min(ai1,ai+1)1)

答案为 max ⁡ i = 0 k f n − 1 , i \max\limits_{i=0}^kf_{n-1,i} i=0maxkfn1,i

时间复杂度为 O ( n k ) O(nk) O(nk)

code

#include<bits/stdc++.h>
using namespace std;
int n,k;
long long ans=0,a[2005],f[2005][2005];
int main()
{
	scanf("%d%d",&n,&k);
	for(int i=1;i<=n;i++){
		scanf("%lld",&a[i]);
	}
	for(int i=1;i<=n;i++){
		for(int j=0;j<=n;j++) f[i][j]=-1e18;
	}
	f[1][0]=0;
	for(int i=2;i<n;i++){
		for(int j=0;j<=k;j++){
			f[i][j]=f[i-1][j];
			if(a[i]<a[i-1]&&a[i]<a[i+1]) f[i][j]=max(f[i][j],f[i-2][j]+a[i]);
			else if(j>=1) f[i][j]=max(f[i][j],f[i-2][j-1]+min(a[i-1],a[i+1])-1);
		}
	}
	for(int i=0;i<=k;i++) ans=max(ans,f[n-1][i]);
	printf("%lld",ans);
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值