定积分的计算(分部积分法)习题

文章展示了如何利用分部积分法计算三道不同的积分题,包括含arctanx和xlnx的函数积分,以及利用连续函数性质求解与f(x)相关的积分问题。解题过程中强调了对积分技巧的掌握和应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前置知识:定积分的计算(分部积分法)

习题1

计算 ∫ 1 3 arctan ⁡ x d x \int_1^{\sqrt 3}\arctan xdx 13 arctanxdx

解:
\qquad 原式 = x arctan ⁡ x ∣ 1 3 − ∫ 1 3 x d ( arctan ⁡ x ) = 3 arctan ⁡ 3 − arctan ⁡ 1 − ∫ 1 3 x 1 + x 2 d x =x\arctan x\bigg\vert_1^{\sqrt 3}-\int_1^{\sqrt 3}xd(\arctan x)=\sqrt 3\arctan \sqrt 3-\arctan 1-\int_1^{\sqrt 3}\dfrac{x}{1+x^2}dx =xarctanx 13 13 xd(arctanx)=3 arctan3 arctan113

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值