前置知识:定积分的计算(分部积分法)
习题1
计算 ∫ 1 3 arctan x d x \int_1^{\sqrt 3}\arctan xdx ∫13arctanxdx
解:
\qquad 原式 = x arctan x ∣ 1 3 − ∫ 1 3 x d ( arctan x ) = 3 arctan 3 − arctan 1 − ∫ 1 3 x 1 + x 2 d x =x\arctan x\bigg\vert_1^{\sqrt 3}-\int_1^{\sqrt 3}xd(\arctan x)=\sqrt 3\arctan \sqrt 3-\arctan 1-\int_1^{\sqrt 3}\dfrac{x}{1+x^2}dx =xarctanx
13−∫13xd(arctanx)=3arctan3−arctan1−∫13