定积分的计算(分部积分法)

文章介绍了定积分的分部积分法则,该法则用于计算某些特定形式的积分。通过牛顿-莱布尼茨公式,证明了分部积分的关系,并提供了两个例题来展示如何运用此方法。例题1计算了∫01xexdx的积分,例题2利用给定条件f(1)=2和∫01f(x)dx=1,求解∫01xf(x)dx的值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前置知识


定积分分部积分法

u , v u,v u,v [ a , b ] [a,b] [a,b]上可导,且 u ′ , v ′ u',v' u,v [ a , b ] [a,b] [a,b]上连续,则

∫ a b u ( x ) v ′ ( x ) d x = u ( x ) v ( x ) ∣ a b − ∫ a b u ′ ( x ) v ( x ) d x \int_a^bu(x)v'(x)dx=u(x)v(x)\bigg\vert_a^b-\int_a^bu'(x)v(x)dx abu(x)v(x)dx=u(x)v(x) ababu(x)v(x)dx

也可写作

∫ a b u d v = u v ∣ a b − ∫ a b v d u \int_a^budv=uv\bigg\vert_a^b-\int_a^bvdu abudv=uv ababvdu

证明: 根据复合函数求导,有

u ( x ) v ( x ) ∣ a b = ∫ a b [ u ( x ) v ( x ) ] ′ d x = ∫ a b u ( x ) v ′ ( x ) d x + ∫ a b u ′ ( x ) v ( x ) d x u(x)v(x)\bigg\vert_a^b=\int_a^b[u(x)v(x)]'dx=\int_a^bu(x)v'(x)dx+\int_a^bu'(x)v(x)dx u(x)v(x) ab=ab[u(x)v(x)]dx=abu(x)v(x)dx+abu(x)v(x)dx

移项得

∫ a b u ( x ) v ′ ( x ) d x = u ( x ) v ( x ) ∣ a b − ∫ a b u ′ ( x ) v ( x ) d x \int_a^bu(x)v'(x)dx=u(x)v(x)\bigg\vert_a^b-\int_a^bu'(x)v(x)dx abu(x)v(x)dx=u(x)v(x) ababu(x)v(x)dx


例题1

计算 ∫ 0 1 x e x d x \int_0^1xe^xdx 01xexdx

解:
\qquad 原式 = ∫ 0 1 x d ( e x ) = x e x ∣ 0 1 − ∫ 0 1 e x d x = x e x ∣ 0 1 − e x ∣ 0 1 = e − ( e − 1 ) = 1 =\int_0^1xd(e^x)=xe^x\bigg\vert_0^1-\int_0^1e^xdx=xe^x\bigg\vert_0^1-e^x\bigg\vert_0^1=e-(e-1)=1 =01xd(ex)=xex 0101exdx=xex 01ex 01=e(e1)=1


例题2

已知 f ( 1 ) = 2 f(1)=2 f(1)=2 ∫ 0 1 f ( x ) d x = 1 \int_0^1f(x)dx=1 01f(x)dx=1,计算 ∫ 0 1 x f ′ ( x ) d x \int_0^1xf'(x)dx 01xf(x)dx

解:
\qquad 原式 = ∫ 0 1 x d [ f ( x ) ] = x f ( x ) ∣ 0 1 − ∫ 0 1 f ( x ) d x = f ( 1 ) − ∫ 0 1 f ( x ) d x = 2 − 1 = 1 =\int_0^1xd[f(x)]=xf(x)\bigg\vert_0^1-\int_0^1f(x)dx=f(1)-\int_0^1f(x)dx=2-1=1 =01xd[f(x)]=xf(x) 0101f(x)dx=f(1)01f(x)dx=21=1

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值