题目 1:
∫ x 2 arctan ( x ) d x \int x^2 \arctan(x) \, dx ∫x2arctan(x)dx
解答:
令
u
=
arctan
(
x
)
⟹
d
u
=
1
1
+
x
2
d
x
u = \arctan(x) \implies du = \frac{1}{1+x^2} dx
u=arctan(x)⟹du=1+x21dx
令
d
v
=
x
2
d
x
⟹
v
=
x
3
3
dv = x^2 dx \implies v = \frac{x^3}{3}
dv=x2dx⟹v=3x3
运用分部积分公式:
∫ x 2 arctan ( x ) d x = x 3 3 arctan ( x ) − ∫ x 3 3 ( 1 + x 2 ) d x \int x^2 \arctan(x) \, dx = \frac{x^3}{3} \arctan(x) - \int \frac{x^3}{3(1+x^2)} dx ∫x2arctan(x)dx=3x3arctan(x)−∫3(1+x2)x3dx
现在我们需要解决 ∫ x 3 3 ( 1 + x 2 ) d x \int \frac{x^3}{3(1+x^2)} dx ∫3(1+x2)x3dx。我们可以使用多项式长除法或者改写被积函数:
x 3 1 + x 2 = x − x 1 + x 2 \frac{x^3}{1+x^2} = x - \frac{x}{1+x^2} 1+x2x3=x−1+x2x
因此:
∫ x 3 3 ( 1 + x 2 ) d x = 1 3 ∫ ( x − x 1 + x 2 ) d x = 1 3 ( x 2 2 − 1 2 ln ∣ 1 + x 2 ∣ ) + C \int \frac{x^3}{3(1+x^2)} dx = \frac{1}{3} \int \left( x - \frac{x}{1+x^2} \right) dx = \frac{1}{3} \left( \frac{x^2}{2} - \frac{1}{2} \ln|1+x^2| \right) + C ∫3(1+x2)x3dx=31∫(x−1+x2x)dx=31(2x2−21ln∣1+x2∣)+C
综合起来:
∫ x 2 arctan ( x ) d x = x 3 3 arctan ( x ) − 1 3 ( x 2 2 − 1 2 ln ∣ 1 + x 2 ∣ ) + C = x 3 3 arctan ( x ) − x 2 6 + 1 6 ln ∣ 1 + x 2 ∣ + C \int x^2 \arctan(x) \, dx = \frac{x^3}{3} \arctan(x) - \frac{1}{3} \left( \frac{x^2}{2} - \frac{1}{2} \ln|1+x^2| \right) + C = \frac{x^3}{3} \arctan(x) - \frac{x^2}{6} + \frac{1}{6} \ln|1+x^2| + C ∫x2arctan(x)dx=3x3arctan(x)−31(2x2−21ln∣1+x2∣)+C=3x3arctan(x)−6x2+61ln∣1+x2∣+C
题目 2:
∫ e 2 x sin ( 3 x ) d x \int e^{2x} \sin(3x) \, dx ∫e2xsin(3x)dx
解答: 这题也需要两次分部积分。 我们先选择:
u = sin(3x)
,则du = 3cos(3x) dx
dv = e^{2x} dx
,则v = (1/2)e^{2x}
第一次分部积分:
∫ e 2 x sin ( 3 x ) d x = 1 2 e 2 x sin ( 3 x ) − 3 2 ∫ e 2 x cos ( 3 x ) d x \int e^{2x} \sin(3x) \, dx = \frac{1}{2} e^{2x} \sin(3x) - \frac{3}{2} \int e^{2x} \cos(3x) \, dx ∫e2xsin(3x)dx=21e2xsin(3x)−23∫e2xcos(3x)dx
现在处理 ∫ e 2 x cos ( 3 x ) d x \int e^{2x} \cos(3x) \, dx ∫e2xcos(3x)dx,再次使用分部积分:
u = cos(3x)
,则du = -3sin(3x) dx
dv = e^{2x} dx
,则v = (1/2)e^{2x}
∫ e 2 x cos ( 3 x ) d x = 1 2 e 2 x cos ( 3 x ) + 3 2 ∫ e 2 x sin ( 3 x ) d x \int e^{2x} \cos(3x) \, dx = \frac{1}{2} e^{2x} \cos(3x) + \frac{3}{2} \int e^{2x} \sin(3x) \, dx ∫e2xcos(3x)dx=21e2xcos(3x)+23∫e2xsin(3x)dx
将这个结果代入第一次分部积分的结果:
∫ e 2 x sin ( 3 x ) d x = 1 2 e 2 x sin ( 3 x ) − 3 2 ( 1 2 e 2 x cos ( 3 x ) + 3 2 ∫ e 2 x sin ( 3 x ) d x ) \int e^{2x} \sin(3x) \, dx = \frac{1}{2} e^{2x} \sin(3x) - \frac{3}{2} \left( \frac{1}{2} e^{2x} \cos(3x) + \frac{3}{2} \int e^{2x} \sin(3x) \, dx \right) ∫e2xsin(3x)dx=21e2xsin(3x)−23(21e2xcos(3x)+23∫e2xsin(3x)dx)
∫ e 2 x sin ( 3 x ) d x = 1 2 e 2 x sin ( 3 x ) − 3 4 e 2 x cos ( 3 x ) − 9 4 ∫ e 2 x sin ( 3 x ) d x \int e^{2x} \sin(3x) \, dx = \frac{1}{2} e^{2x} \sin(3x) - \frac{3}{4} e^{2x} \cos(3x) - \frac{9}{4} \int e^{2x} \sin(3x) \, dx ∫e2xsin(3x)dx=21e2xsin(3x)−43e2xcos(3x)−49∫e2xsin(3x)dx
现在,将积分项移到等式左边:
13 4 ∫ e 2 x sin ( 3 x ) d x = 1 2 e 2 x sin ( 3 x ) − 3 4 e 2 x cos ( 3 x ) \frac{13}{4} \int e^{2x} \sin(3x) \, dx = \frac{1}{2} e^{2x} \sin(3x) - \frac{3}{4} e^{2x} \cos(3x) 413∫e2xsin(3x)dx=21e2xsin(3x)−43e2xcos(3x)
最终结果:
∫ e 2 x sin ( 3 x ) d x = 4 13 ( 1 2 e 2 x sin ( 3 x ) − 3 4 e 2 x cos ( 3 x ) ) + C = e 2 x ( 2 sin ( 3 x ) − 3 cos ( 3 x ) ) 13 + C \int e^{2x} \sin(3x) \, dx = \frac{4}{13} \left( \frac{1}{2} e^{2x} \sin(3x) - \frac{3}{4} e^{2x} \cos(3x) \right) + C = \frac{e^{2x}(2\sin(3x) - 3\cos(3x))}{13} + C ∫e2xsin(3x)dx=134(21e2xsin(3x)−43e2xcos(3x))+C=13e2x(2sin(3x)−3cos(3x))+C
题目 3:
∫ x 3 ln ( x ) d x \int x^3 \ln(x) \, dx ∫x3ln(x)dx
解答:
选择:
u = ln(x)
,则du = (1/x) dx
dv = x^3 dx
,则v = (1/4)x^4
应用分部积分公式:
∫ x 3 ln ( x ) d x = 1 4 x 4 ln ( x ) − ∫ 1 4 x 4 ⋅ 1 x d x = 1 4 x 4 ln ( x ) − ∫ 1 4 x 3 d x \int x^3 \ln(x) \, dx = \frac{1}{4} x^4 \ln(x) - \int \frac{1}{4} x^4 \cdot \frac{1}{x} \, dx = \frac{1}{4} x^4 \ln(x) - \int \frac{1}{4} x^3 \, dx ∫x3ln(x)dx=41x4ln(x)−∫41x4⋅x1dx=41x4ln(x)−∫41x3dx
= 1 4 x 4 ln ( x ) − 1 16 x 4 + C = \frac{1}{4} x^4 \ln(x) - \frac{1}{16} x^4 + C =41x4ln(x)−161x4+C
题目 4:
∫ sec 3 x d x \int \sec^3 x \, dx ∫sec3xdx
解答: 这道题需要用到一个技巧,需要对 sec 3 x \sec^3 x sec3x 进行巧妙的改写,并进行两次分部积分。
首先,我们把 sec 3 x \sec^3 x sec3x 写成 sec x ⋅ sec 2 x \sec x \cdot \sec^2 x secx⋅sec2x。 然后,我们选择:
u = sec x
,则du = sec x tan x dx
dv = sec^2 x dx
,则v = tan x
应用分部积分公式:
∫ sec 3 x d x = ∫ sec x ⋅ sec 2 x d x = sec x tan x − ∫ tan x ( sec x tan x ) d x = sec x tan x − ∫ sec x tan 2 x d x \int \sec^3 x \, dx = \int \sec x \cdot \sec^2 x \, dx = \sec x \tan x - \int \tan x (\sec x \tan x) \, dx = \sec x \tan x - \int \sec x \tan^2 x \, dx ∫sec3xdx=∫secx⋅sec2xdx=secxtanx−∫tanx(secxtanx)dx=secxtanx−∫secxtan2xdx
现在利用三角恒等式 tan 2 x = sec 2 x − 1 \tan^2 x = \sec^2 x - 1 tan2x=sec2x−1,得到:
∫ sec 3 x d x = sec x tan x − ∫ sec x ( sec 2 x − 1 ) d x = sec x tan x − ∫ sec 3 x d x + ∫ sec x d x \int \sec^3 x \, dx = \sec x \tan x - \int \sec x (\sec^2 x - 1) \, dx = \sec x \tan x - \int \sec^3 x \, dx + \int \sec x \, dx ∫sec3xdx=secxtanx−∫secx(sec2x−1)dx=secxtanx−∫sec3xdx+∫secxdx
注意,积分 ∫ sec 3 x d x \int \sec^3 x \, dx ∫sec3xdx 出现在了等式的两边。 我们可以把等式左边的积分项移到右边:
2 ∫ sec 3 x d x = sec x tan x + ∫ sec x d x 2 \int \sec^3 x \, dx = \sec x \tan x + \int \sec x \, dx 2∫sec3xdx=secxtanx+∫secxdx
我们知道 ∫ sec x d x = ln ∣ sec x + tan x ∣ + C \int \sec x \, dx = \ln |\sec x + \tan x| + C ∫secxdx=ln∣secx+tanx∣+C。 因此:
∫ sec 3 x d x = 1 2 ( sec x tan x + ln ∣ sec x + tan x ∣ ) + C \int \sec^3 x \, dx = \frac{1}{2} \left( \sec x \tan x + \ln |\sec x + \tan x| \right) + C ∫sec3xdx=21(secxtanx+ln∣secx+tanx∣)+C
题目 5:
∫ a 2 − x 2 d x \int \sqrt{a^2 - x^2} \, dx ∫a2−x2dx (其中 a 是常数)
解答: 这道题需要用到三角代换法,然后才能运用分部积分。
令 x = a sin θ
,则 dx = a cos θ dθ
。 代入积分式:
∫ a 2 − x 2 d x = ∫ a 2 − a 2 sin 2 θ ⋅ a cos θ d θ = ∫ a 1 − sin 2 θ ⋅ a cos θ d θ = a 2 ∫ cos 2 θ d θ \int \sqrt{a^2 - x^2} \, dx = \int \sqrt{a^2 - a^2 \sin^2 θ} \cdot a \cos θ \, dθ = \int a \sqrt{1 - \sin^2 θ} \cdot a \cos θ \, dθ = a^2 \int \cos^2 θ \, dθ ∫a2−x2dx=∫a2−a2sin2θ⋅acosθdθ=∫a1−sin2θ⋅acosθdθ=a2∫cos2θdθ
利用三角恒等式 cos 2 θ = 1 + cos ( 2 θ ) 2 \cos^2 θ = \frac{1 + \cos(2θ)}{2} cos2θ=21+cos(2θ):
a 2 ∫ 1 + cos ( 2 θ ) 2 d θ = a 2 2 ∫ ( 1 + cos ( 2 θ ) ) d θ = a 2 2 ( θ + 1 2 sin ( 2 θ ) ) + C a^2 \int \frac{1 + \cos(2θ)}{2} \, dθ = \frac{a^2}{2} \int (1 + \cos(2θ)) \, dθ = \frac{a^2}{2} \left( θ + \frac{1}{2} \sin(2θ) \right) + C a2∫21+cos(2θ)dθ=2a2∫(1+cos(2θ))dθ=2a2(θ+21sin(2θ))+C
现在将 θ 用 x 表示出来: θ = arcsin(x/a)
,且 sin(2θ) = 2sinθcosθ = 2(x/a)√(1-(x/a)²) = 2x√(a²-x²)/a²
。 因此:
∫ a 2 − x 2 d x = a 2 2 arcsin ( x a ) + x a 2 − x 2 2 + C \int \sqrt{a^2 - x^2} \, dx = \frac{a^2}{2} \arcsin\left(\frac{x}{a}\right) + \frac{x\sqrt{a^2 - x^2}}{2} + C ∫a2−x2dx=2a2arcsin(ax)+2xa2−x2+C
题目6:
∫ x ln ( x + 1 ) d x \int x \ln(x+1) dx ∫xln(x+1)dx
解题步骤:
我们使用分部积分法,公式为: ∫u dv = uv - ∫v du
-
选择 u 和 dv:
令 u = ln(x+1),则 du = 1/(x+1) dx
令 dv = x dx,则 v = (1/2)x² -
应用分部积分公式:
∫ x ln ( x + 1 ) d x = 1 2 x 2 ln ( x + 1 ) − ∫ 1 2 x 2 1 x + 1 d x \int x \ln(x+1) dx = \frac{1}{2}x^2 \ln(x+1) - \int \frac{1}{2}x^2 \frac{1}{x+1} dx ∫xln(x+1)dx=21x2ln(x+1)−∫21x2x+11dx
-
化简被积函数:
我们需要化简 ∫(x²/2(x+1)) dx。 我们可以使用多项式长除法或凑微分法。 这里采用多项式长除法:
x² 除以 (x+1) 商为 x - 1,余数为 1。 因此:
x 2 x + 1 = x − 1 + 1 x + 1 \frac{x^2}{x+1} = x - 1 + \frac{1}{x+1} x+1x2=x−1+x+11
-
代入并积分:
∫ x ln ( x + 1 ) d x = 1 2 x 2 ln ( x + 1 ) − 1 2 ∫ ( x − 1 + 1 x + 1 ) d x \int x \ln(x+1) dx = \frac{1}{2}x^2 \ln(x+1) - \frac{1}{2} \int \left( x - 1 + \frac{1}{x+1} \right) dx ∫xln(x+1)dx=21x2ln(x+1)−21∫(x−1+x+11)dx
= 1 2 x 2 ln ( x + 1 ) − 1 2 ( 1 2 x 2 − x + ln ∣ x + 1 ∣ ) + C = \frac{1}{2}x^2 \ln(x+1) - \frac{1}{2} \left( \frac{1}{2}x^2 - x + \ln|x+1| \right) + C =21x2ln(x+1)−21(21x2−x+ln∣x+1∣)+C
-
最终结果:
∫ x ln ( x + 1 ) d x = 1 2 x 2 ln ( x + 1 ) − 1 4 x 2 + 1 2 x − 1 2 ln ∣ x + 1 ∣ + C \int x \ln(x+1) dx = \frac{1}{2}x^2 \ln(x+1) - \frac{1}{4}x^2 + \frac{1}{2}x - \frac{1}{2} \ln|x+1| + C ∫xln(x+1)dx=21x2ln(x+1)−41x2+21x−21ln∣x+1∣+C
因此,不定积分的最终结果是:
1 2 x 2 ln ( x + 1 ) − 1 4 x 2 + 1 2 x − 1 2 ln ∣ x + 1 ∣ + C \frac{1}{2}x^2 \ln(x+1) - \frac{1}{4}x^2 + \frac{1}{2}x - \frac{1}{2} \ln|x+1| + C 21x2ln(x+1)−41x2+21x−21ln∣x+1∣+C
其中 C 是积分常数。 这道题目的综合性在于它结合了分部积分法和多项式长除法(或凑微分法), 整个过程比较清晰,而且计算相对简单,没有过于复杂的代数运算。