分部积分例题

题目 1:

∫ x 2 arctan ⁡ ( x )   d x \int x^2 \arctan(x) \, dx x2arctan(x)dx

解答:

u = arctan ⁡ ( x )    ⟹    d u = 1 1 + x 2 d x u = \arctan(x) \implies du = \frac{1}{1+x^2} dx u=arctan(x)du=1+x21dx
d v = x 2 d x    ⟹    v = x 3 3 dv = x^2 dx \implies v = \frac{x^3}{3} dv=x2dxv=3x3

运用分部积分公式:

∫ x 2 arctan ⁡ ( x )   d x = x 3 3 arctan ⁡ ( x ) − ∫ x 3 3 ( 1 + x 2 ) d x \int x^2 \arctan(x) \, dx = \frac{x^3}{3} \arctan(x) - \int \frac{x^3}{3(1+x^2)} dx x2arctan(x)dx=3x3arctan(x)3(1+x2)x3dx

现在我们需要解决 ∫ x 3 3 ( 1 + x 2 ) d x \int \frac{x^3}{3(1+x^2)} dx 3(1+x2)x3dx。我们可以使用多项式长除法或者改写被积函数:

x 3 1 + x 2 = x − x 1 + x 2 \frac{x^3}{1+x^2} = x - \frac{x}{1+x^2} 1+x2x3=x1+x2x

因此:

∫ x 3 3 ( 1 + x 2 ) d x = 1 3 ∫ ( x − x 1 + x 2 ) d x = 1 3 ( x 2 2 − 1 2 ln ⁡ ∣ 1 + x 2 ∣ ) + C \int \frac{x^3}{3(1+x^2)} dx = \frac{1}{3} \int \left( x - \frac{x}{1+x^2} \right) dx = \frac{1}{3} \left( \frac{x^2}{2} - \frac{1}{2} \ln|1+x^2| \right) + C 3(1+x2)x3dx=31(x1+x2x)dx=31(2x221ln∣1+x2)+C

综合起来:

∫ x 2 arctan ⁡ ( x )   d x = x 3 3 arctan ⁡ ( x ) − 1 3 ( x 2 2 − 1 2 ln ⁡ ∣ 1 + x 2 ∣ ) + C = x 3 3 arctan ⁡ ( x ) − x 2 6 + 1 6 ln ⁡ ∣ 1 + x 2 ∣ + C \int x^2 \arctan(x) \, dx = \frac{x^3}{3} \arctan(x) - \frac{1}{3} \left( \frac{x^2}{2} - \frac{1}{2} \ln|1+x^2| \right) + C = \frac{x^3}{3} \arctan(x) - \frac{x^2}{6} + \frac{1}{6} \ln|1+x^2| + C x2arctan(x)dx=3x3arctan(x)31(2x221ln∣1+x2)+C=3x3arctan(x)6x2+61ln∣1+x2+C

题目 2:

∫ e 2 x sin ⁡ ( 3 x )   d x \int e^{2x} \sin(3x) \, dx e2xsin(3x)dx

解答: 这题也需要两次分部积分。 我们先选择:

  • u = sin(3x),则 du = 3cos(3x) dx
  • dv = e^{2x} dx,则 v = (1/2)e^{2x}

第一次分部积分:

∫ e 2 x sin ⁡ ( 3 x )   d x = 1 2 e 2 x sin ⁡ ( 3 x ) − 3 2 ∫ e 2 x cos ⁡ ( 3 x )   d x \int e^{2x} \sin(3x) \, dx = \frac{1}{2} e^{2x} \sin(3x) - \frac{3}{2} \int e^{2x} \cos(3x) \, dx e2xsin(3x)dx=21e2xsin(3x)23e2xcos(3x)dx

现在处理 ∫ e 2 x cos ⁡ ( 3 x )   d x \int e^{2x} \cos(3x) \, dx e2xcos(3x)dx,再次使用分部积分:

  • u = cos(3x),则 du = -3sin(3x) dx
  • dv = e^{2x} dx,则 v = (1/2)e^{2x}

∫ e 2 x cos ⁡ ( 3 x )   d x = 1 2 e 2 x cos ⁡ ( 3 x ) + 3 2 ∫ e 2 x sin ⁡ ( 3 x )   d x \int e^{2x} \cos(3x) \, dx = \frac{1}{2} e^{2x} \cos(3x) + \frac{3}{2} \int e^{2x} \sin(3x) \, dx e2xcos(3x)dx=21e2xcos(3x)+23e2xsin(3x)dx

将这个结果代入第一次分部积分的结果:

∫ e 2 x sin ⁡ ( 3 x )   d x = 1 2 e 2 x sin ⁡ ( 3 x ) − 3 2 ( 1 2 e 2 x cos ⁡ ( 3 x ) + 3 2 ∫ e 2 x sin ⁡ ( 3 x )   d x ) \int e^{2x} \sin(3x) \, dx = \frac{1}{2} e^{2x} \sin(3x) - \frac{3}{2} \left( \frac{1}{2} e^{2x} \cos(3x) + \frac{3}{2} \int e^{2x} \sin(3x) \, dx \right) e2xsin(3x)dx=21e2xsin(3x)23(21e2xcos(3x)+23e2xsin(3x)dx)

∫ e 2 x sin ⁡ ( 3 x )   d x = 1 2 e 2 x sin ⁡ ( 3 x ) − 3 4 e 2 x cos ⁡ ( 3 x ) − 9 4 ∫ e 2 x sin ⁡ ( 3 x )   d x \int e^{2x} \sin(3x) \, dx = \frac{1}{2} e^{2x} \sin(3x) - \frac{3}{4} e^{2x} \cos(3x) - \frac{9}{4} \int e^{2x} \sin(3x) \, dx e2xsin(3x)dx=21e2xsin(3x)43e2xcos(3x)49e2xsin(3x)dx

现在,将积分项移到等式左边:

13 4 ∫ e 2 x sin ⁡ ( 3 x )   d x = 1 2 e 2 x sin ⁡ ( 3 x ) − 3 4 e 2 x cos ⁡ ( 3 x ) \frac{13}{4} \int e^{2x} \sin(3x) \, dx = \frac{1}{2} e^{2x} \sin(3x) - \frac{3}{4} e^{2x} \cos(3x) 413e2xsin(3x)dx=21e2xsin(3x)43e2xcos(3x)

最终结果:

∫ e 2 x sin ⁡ ( 3 x )   d x = 4 13 ( 1 2 e 2 x sin ⁡ ( 3 x ) − 3 4 e 2 x cos ⁡ ( 3 x ) ) + C = e 2 x ( 2 sin ⁡ ( 3 x ) − 3 cos ⁡ ( 3 x ) ) 13 + C \int e^{2x} \sin(3x) \, dx = \frac{4}{13} \left( \frac{1}{2} e^{2x} \sin(3x) - \frac{3}{4} e^{2x} \cos(3x) \right) + C = \frac{e^{2x}(2\sin(3x) - 3\cos(3x))}{13} + C e2xsin(3x)dx=134(21e2xsin(3x)43e2xcos(3x))+C=13e2x(2sin(3x)3cos(3x))+C

题目 3:

∫ x 3 ln ⁡ ( x )   d x \int x^3 \ln(x) \, dx x3ln(x)dx

解答:

选择:

  • u = ln(x),则 du = (1/x) dx
  • dv = x^3 dx,则 v = (1/4)x^4

应用分部积分公式:

∫ x 3 ln ⁡ ( x )   d x = 1 4 x 4 ln ⁡ ( x ) − ∫ 1 4 x 4 ⋅ 1 x   d x = 1 4 x 4 ln ⁡ ( x ) − ∫ 1 4 x 3   d x \int x^3 \ln(x) \, dx = \frac{1}{4} x^4 \ln(x) - \int \frac{1}{4} x^4 \cdot \frac{1}{x} \, dx = \frac{1}{4} x^4 \ln(x) - \int \frac{1}{4} x^3 \, dx x3ln(x)dx=41x4ln(x)41x4x1dx=41x4ln(x)41x3dx

= 1 4 x 4 ln ⁡ ( x ) − 1 16 x 4 + C = \frac{1}{4} x^4 \ln(x) - \frac{1}{16} x^4 + C =41x4ln(x)161x4+C

题目 4:

∫ sec ⁡ 3 x   d x \int \sec^3 x \, dx sec3xdx

解答: 这道题需要用到一个技巧,需要对 sec ⁡ 3 x \sec^3 x sec3x 进行巧妙的改写,并进行两次分部积分。

首先,我们把 sec ⁡ 3 x \sec^3 x sec3x 写成 sec ⁡ x ⋅ sec ⁡ 2 x \sec x \cdot \sec^2 x secxsec2x。 然后,我们选择:

  • u = sec x,则 du = sec x tan x dx
  • dv = sec^2 x dx,则 v = tan x

应用分部积分公式:

∫ sec ⁡ 3 x   d x = ∫ sec ⁡ x ⋅ sec ⁡ 2 x   d x = sec ⁡ x tan ⁡ x − ∫ tan ⁡ x ( sec ⁡ x tan ⁡ x )   d x = sec ⁡ x tan ⁡ x − ∫ sec ⁡ x tan ⁡ 2 x   d x \int \sec^3 x \, dx = \int \sec x \cdot \sec^2 x \, dx = \sec x \tan x - \int \tan x (\sec x \tan x) \, dx = \sec x \tan x - \int \sec x \tan^2 x \, dx sec3xdx=secxsec2xdx=secxtanxtanx(secxtanx)dx=secxtanxsecxtan2xdx

现在利用三角恒等式 tan ⁡ 2 x = sec ⁡ 2 x − 1 \tan^2 x = \sec^2 x - 1 tan2x=sec2x1,得到:

∫ sec ⁡ 3 x   d x = sec ⁡ x tan ⁡ x − ∫ sec ⁡ x ( sec ⁡ 2 x − 1 )   d x = sec ⁡ x tan ⁡ x − ∫ sec ⁡ 3 x   d x + ∫ sec ⁡ x   d x \int \sec^3 x \, dx = \sec x \tan x - \int \sec x (\sec^2 x - 1) \, dx = \sec x \tan x - \int \sec^3 x \, dx + \int \sec x \, dx sec3xdx=secxtanxsecx(sec2x1)dx=secxtanxsec3xdx+secxdx

注意,积分 ∫ sec ⁡ 3 x   d x \int \sec^3 x \, dx sec3xdx 出现在了等式的两边。 我们可以把等式左边的积分项移到右边:

2 ∫ sec ⁡ 3 x   d x = sec ⁡ x tan ⁡ x + ∫ sec ⁡ x   d x 2 \int \sec^3 x \, dx = \sec x \tan x + \int \sec x \, dx 2sec3xdx=secxtanx+secxdx

我们知道 ∫ sec ⁡ x   d x = ln ⁡ ∣ sec ⁡ x + tan ⁡ x ∣ + C \int \sec x \, dx = \ln |\sec x + \tan x| + C secxdx=lnsecx+tanx+C。 因此:

∫ sec ⁡ 3 x   d x = 1 2 ( sec ⁡ x tan ⁡ x + ln ⁡ ∣ sec ⁡ x + tan ⁡ x ∣ ) + C \int \sec^3 x \, dx = \frac{1}{2} \left( \sec x \tan x + \ln |\sec x + \tan x| \right) + C sec3xdx=21(secxtanx+lnsecx+tanx)+C

题目 5:

∫ a 2 − x 2   d x \int \sqrt{a^2 - x^2} \, dx a2x2 dx (其中 a 是常数)

解答: 这道题需要用到三角代换法,然后才能运用分部积分。

x = a sin θ,则 dx = a cos θ dθ。 代入积分式:

∫ a 2 − x 2   d x = ∫ a 2 − a 2 sin ⁡ 2 θ ⋅ a cos ⁡ θ   d θ = ∫ a 1 − sin ⁡ 2 θ ⋅ a cos ⁡ θ   d θ = a 2 ∫ cos ⁡ 2 θ   d θ \int \sqrt{a^2 - x^2} \, dx = \int \sqrt{a^2 - a^2 \sin^2 θ} \cdot a \cos θ \, dθ = \int a \sqrt{1 - \sin^2 θ} \cdot a \cos θ \, dθ = a^2 \int \cos^2 θ \, dθ a2x2 dx=a2a2sin2θ acosθdθ=a1sin2θ acosθdθ=a2cos2θdθ

利用三角恒等式 cos ⁡ 2 θ = 1 + cos ⁡ ( 2 θ ) 2 \cos^2 θ = \frac{1 + \cos(2θ)}{2} cos2θ=21+cos(2θ):

a 2 ∫ 1 + cos ⁡ ( 2 θ ) 2   d θ = a 2 2 ∫ ( 1 + cos ⁡ ( 2 θ ) )   d θ = a 2 2 ( θ + 1 2 sin ⁡ ( 2 θ ) ) + C a^2 \int \frac{1 + \cos(2θ)}{2} \, dθ = \frac{a^2}{2} \int (1 + \cos(2θ)) \, dθ = \frac{a^2}{2} \left( θ + \frac{1}{2} \sin(2θ) \right) + C a221+cos(2θ)dθ=2a2(1+cos(2θ))dθ=2a2(θ+21sin(2θ))+C

现在将 θ 用 x 表示出来: θ = arcsin(x/a),且 sin(2θ) = 2sinθcosθ = 2(x/a)√(1-(x/a)²) = 2x√(a²-x²)/a²。 因此:

∫ a 2 − x 2   d x = a 2 2 arcsin ⁡ ( x a ) + x a 2 − x 2 2 + C \int \sqrt{a^2 - x^2} \, dx = \frac{a^2}{2} \arcsin\left(\frac{x}{a}\right) + \frac{x\sqrt{a^2 - x^2}}{2} + C a2x2 dx=2a2arcsin(ax)+2xa2x2 +C

题目6:

∫ x ln ⁡ ( x + 1 ) d x \int x \ln(x+1) dx xln(x+1)dx

解题步骤:

我们使用分部积分法,公式为: ∫u dv = uv - ∫v du

  1. 选择 u 和 dv:

    令 u = ln(x+1),则 du = 1/(x+1) dx
    令 dv = x dx,则 v = (1/2)x²

  2. 应用分部积分公式:

    ∫ x ln ⁡ ( x + 1 ) d x = 1 2 x 2 ln ⁡ ( x + 1 ) − ∫ 1 2 x 2 1 x + 1 d x \int x \ln(x+1) dx = \frac{1}{2}x^2 \ln(x+1) - \int \frac{1}{2}x^2 \frac{1}{x+1} dx xln(x+1)dx=21x2ln(x+1)21x2x+11dx

  3. 化简被积函数:

    我们需要化简 ∫(x²/2(x+1)) dx。 我们可以使用多项式长除法或凑微分法。 这里采用多项式长除法:

    x² 除以 (x+1) 商为 x - 1,余数为 1。 因此:

    x 2 x + 1 = x − 1 + 1 x + 1 \frac{x^2}{x+1} = x - 1 + \frac{1}{x+1} x+1x2=x1+x+11

  4. 代入并积分:

    ∫ x ln ⁡ ( x + 1 ) d x = 1 2 x 2 ln ⁡ ( x + 1 ) − 1 2 ∫ ( x − 1 + 1 x + 1 ) d x \int x \ln(x+1) dx = \frac{1}{2}x^2 \ln(x+1) - \frac{1}{2} \int \left( x - 1 + \frac{1}{x+1} \right) dx xln(x+1)dx=21x2ln(x+1)21(x1+x+11)dx

    = 1 2 x 2 ln ⁡ ( x + 1 ) − 1 2 ( 1 2 x 2 − x + ln ⁡ ∣ x + 1 ∣ ) + C = \frac{1}{2}x^2 \ln(x+1) - \frac{1}{2} \left( \frac{1}{2}x^2 - x + \ln|x+1| \right) + C =21x2ln(x+1)21(21x2x+lnx+1∣)+C

  5. 最终结果:

    ∫ x ln ⁡ ( x + 1 ) d x = 1 2 x 2 ln ⁡ ( x + 1 ) − 1 4 x 2 + 1 2 x − 1 2 ln ⁡ ∣ x + 1 ∣ + C \int x \ln(x+1) dx = \frac{1}{2}x^2 \ln(x+1) - \frac{1}{4}x^2 + \frac{1}{2}x - \frac{1}{2} \ln|x+1| + C xln(x+1)dx=21x2ln(x+1)41x2+21x21lnx+1∣+C

因此,不定积分的最终结果是:

1 2 x 2 ln ⁡ ( x + 1 ) − 1 4 x 2 + 1 2 x − 1 2 ln ⁡ ∣ x + 1 ∣ + C \frac{1}{2}x^2 \ln(x+1) - \frac{1}{4}x^2 + \frac{1}{2}x - \frac{1}{2} \ln|x+1| + C 21x2ln(x+1)41x2+21x21lnx+1∣+C

其中 C 是积分常数。 这道题目的综合性在于它结合了分部积分法和多项式长除法(或凑微分法), 整个过程比较清晰,而且计算相对简单,没有过于复杂的代数运算。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值