2023NOIP A层联测9 长春花

题目大意

给定一个质数 p p p,对于每个 0 ≤ x < p 0\leq x<p 0x<p,设 f ( x ) f(x) f(x)表示最小的非负整数 a a a,使得存在一个非负整数 b b b,满足 ( a 2 + b 2 )   m o d   p = x (a^2+b^2)\bmod p=x (a2+b2)modp=x

max ⁡ { f ( 0 ) , f ( 1 ) , f ( 2 ) , … , f ( p − 1 ) } \max\{f(0),f(1),f(2),\dots,f(p-1)\} max{f(0),f(1),f(2),,f(p1)}的值。

2 ≤ p ≤ 1 0 5 2\leq p\leq 10^5 2p105,保证 p p p为质数。


题解

题意即求一个最小的 m x mx mx,使得对于每个 0 ≤ i < p 0\leq i<p 0i<p,都存在 0 ≤ a ≤ m x 0\leq a\leq mx 0amx 0 ≤ b < p 0\leq b<p 0b<p使得 ( a 2 + b 2 )   m o d   p = i (a^2+b^2)\bmod p=i (a2+b2)modp=i

我们可以试着打暴力,发现当 2 ≤ p ≤ 1 0 5 2\leq p\leq 10^5 2p105 p p p为质数时, m x mx mx不超过 31 31 31。所以,我们只需要从 0 0 0 31 31 31枚举 a a a,从 0 0 0 p − 1 p-1 p1枚举 b b b,并在 ( a 2 + b 2 )   m o d   p (a^2+b^2)\bmod p (a2+b2)modp的位置上打上标记。当 0 0 0 p − 1 p-1 p1都被打上标记时,当前的 a a a即为答案。

时间复杂度为 O ( n ⋅ m x ) O(n\cdot mx) O(nmx),其中 m x mx mx为答案, m x ≤ 31 mx\leq 31 mx31

code

#include<bits/stdc++.h>
using namespace std;
int p,nd,v[100005];
int main()
{
	scanf("%d",&p);nd=p;
	for(int i=0;i<100;i++){
		for(int j=0;j<p;j++){
			int tmp=(1ll*i*i+1ll*j*j)%p;
			if(!v[tmp]){
				++v[tmp];--nd;
			}
		}
		if(!nd){
			printf("%d",i);
			return 0;
		}
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值