字节跳动今年校招的薪资!!!

我之前还以为今年小红书校招薪资能稳坐第一呢,毕竟月薪基本都 30k 往上,高的都能冲到 38k。

结果字节一开奖,直接绝杀全场!后端开发岗的 base 薪资居然有开到 40k + 的,再加上签字费,第一年总包直接干到 70 万以上。

这薪资真的离谱到家了,不光是今年最高,估计也是字节校招历史以来最高的。这入职不得直接是 2-1 级别?老员工要是看到旁边刚毕业的应届生,薪资比自己还高,不得偷偷哭晕?

不过能拿到 40k+base 的还是少数人,大部分同学的薪资还是在 25k-35k 这个区间。

我特意收集了一波已开奖的开发岗薪资(后端/客户端/前端/大数据开发),整理出来给大家参考:

档次薪资构成总包(第一年)

SSP+

40k×15 + 10w(签字费)

70w

SSP

36k×15 + 9w(签字费)

63w

SSP

38k×15 + 5w(签字费)

62w

SSP

35k×15 + 8w(签字费)

60.5w

SSP

34k×15 + 9w(签字费)

60w

SSP

32k×15 + 5w(签字费)

53w

SP

30k×15 + 1w(签字费)

46w

SP

29k×15

43.5w

SP

28k×15

42w

白菜档

26k×15

39w

上面的薪资档次是我自己猜的啊,不是官方数据,仅供大家心里有个数。

跟 HR 谈薪的时候,要是他明确说 base 没法再涨了,你可以试试多要点头签字费,说不定有戏。

这时候 HR 一般会帮你内部申请申请,要是你手上还有其他同级别公司的 offer,成功率就更高了。

所以有时候你会发现,有些 base 高的签字费,反而不如 base 低的多,大概率就是谈薪时 base 涨不动了,公司就用签字费补了。


给大家推荐一下我自己的网站,上面不仅有各种技术文章和学习教程,还提供了程序员学习需要的各种资料书籍下载,大家可以点击左下角【阅读原文】去看一下~
内容概要:本文是一份针对2025年中国企业品牌传播环境撰写的《全网媒体发稿白皮书》,聚焦企业媒体发稿的策略制定、渠道选择与效果评估难题。通过分析当前企业面临的资源分散、内容同质、效果难量化等核心痛点,系统性地介绍了新闻媒体、央媒、地方官媒和自媒体四大渠道的特点与适用场景,并深度融合“传声港”AI驱动的新媒体平台能力,提出“策略+工具+落地”的一体化解决方案。白皮书详细阐述了传声港在资源整合、AI智能匹配、舆情监测、合规审核及全链路效果追踪方面的技术优势,构建了涵盖曝光、互动、转化与品牌影响力的多维评估体系,并通过快消、科技、零售等行业的实战案例验证其有效性。最后,提出了按企业发展阶段和营销节点定制的媒体组合策略,强调本土化传播与政府关系协同的重要性,助力企业实现品牌声量与实际转化的双重增长。; 适合人群:企业市场部负责人、品牌方管理者、公关传播从业者及从事数字营销的相关人员,尤其适用于初创期至成熟期不同发展阶段的企业决策者。; 使用场景及目标:①帮助企业科学制定媒体发稿策略,优化预算分配;②解决渠道对接繁琐、投放不精准、效果不可衡量等问题;③指导企业在重大营销节点(如春节、双11)开展高效传播;④提升品牌权威性、区域渗透力与危机应对能力; 阅读建议:建议结合自身企业所处阶段和发展目标,参考文中提供的“传声港服务组合”与“预算分配建议”进行策略匹配,同时重视AI工具在投放、监测与优化中的实际应用,定期复盘数据以实现持续迭代。
先展示下效果 https://pan.quark.cn/s/987bb7a43dd9 VeighNa - By Traders, For Traders, AI-Powered. Want to read this in english ? Go here VeighNa是一套基于Python的开源量化交易系统开发框架,在开源社区持续不断的贡献下一步步成长为多功能量化交易平台,自发布以来已经积累了众多来自金融机构或相关领域的用户,包括私募基金、证券公司、期货公司等。 在使用VeighNa进行二次开发(策略、模块等)的过程中有任何疑问,请查看VeighNa项目文档,如果无法解决请前往官方社区论坛的【提问求助】板块寻求帮助,也欢迎在【经验分享】板块分享你的使用心得! 想要获取更多关于VeighNa的资讯信息? 请扫描下方二维码添加小助手加入【VeighNa社区交流微信群】: AI-Powered VeighNa发布十周年之际正式推出4.0版本,重磅新增面向AI量化策略的vnpy.alpha模块,为专业量化交易员提供一站式多因子机器学习(ML)策略开发、投研和实盘交易解决方案: :bar_chart: dataset:因子特征工程 * 专为ML算法训练优化设计,支持高效批量特征计算与处理 * 内置丰富的因子特征表达式计算引擎,实现快速一键生成训练数据 * Alpha 158:源于微软Qlib项目的股票市场特征集合,涵盖K线形态、价格趋势、时序波动等多维度量化因子 :bulb: model:预测模型训练 * 提供标准化的ML模型开发模板,大幅简化模型构建与训练流程 * 统一API接口设计,支持无缝切换不同算法进行性能对比测试 * 集成多种主流机器学习算法: * Lass...
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值