深度学习 第一章 深度学习简介

本文介绍了深度学习的基础知识,包括安装anaconda、训练模型的常规步骤、超参数选择、交叉验证、得分函数和损失函数的概念。还讨论了sigmoid函数和softmax分类器在多分类问题中的应用。
摘要由CSDN通过智能技术生成

深度学习入门-唐宇迪 (笔记加自我整理)

深度学习 第一章 简介

1.安装anaconda

     Anaconda是最方便的环境,其他的库都可以安装,建议使用anaconda自带的安装命令。初学者不建议再环境上浪费太多时间,容易打消积极性,anaconda集成环境非常棒。

2.常规套路

    和考试的套路一样,要先收集之前的测试题,要知道这些题的正确答案是什么;然后开始做题训练,大概率会有个知识体系,知道什么样的题答案是什么;然后需要通过一些模拟考试测试评估,评估下自己学习的程度,比如满分100分自己可以得到多少分。

  • 收集数据,给定标签
  • 训练一个分类器
  • 测试、评估

3.超参数选择

      参数一般是可以学习到的,比如用线性回归模型,每个特征的重要性是多少,也就是权重,都是可以学习到的;而超参数一般都是指定的,比如说k近邻算法,判断一个样本属于哪一类,是和这个样本周围最近的样本相关的,k就是超参数,比如指定为3,那么就是最近3个样本属于哪一类,如果指定为5,就是最近的5个样本属于哪一类。

     不管是机器学习还是深度学习,一般用于训练模型的数据,和用于评测的数据,是完全不重复的,就好像要准备考试,考试题不会是联系题原题。但是训练集中也会存在问题,比如收集到的题覆盖度是不是够,会不会这次的题比较简单,下一波题比较难,两波题的难度不一样怎么综合衡量能力。

     这里很常见也很关键的方法,就是交叉验证,就

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值