注:此文章仅列部分题目,供考前加深印象使用!(具体答案请参照相关总结博客)
01、逻辑符号表达
1、并非一切事情都能由机器来完成
2、存在一个唯一的偶素数
3、自然数不是奇数就是偶数,且奇数不能被2整除
4、猫必捕鼠
5、没有不犯错误的人
02、二项式定理
1、函数 f(t)=(1−2t)−7 中 t5 的系数是 ________
2、
03、错位排列问题
1、有5个人雨天带伞参加会议,每人带一把伞,进入会场时随意放伞,结束时每人随意拿一把伞离开,问:
(1)每人拿到的都不是自己的伞的排列数。
(2)至少有一人拿到自己伞的概率是多少?
2、5位男生和5位女生排成男女相间的一列,有____ 种不同的排法
3、如果四对夫妻围圆桌就座,没有任何限制条件,共有____种不同的座法;如果这四对夫妻中的四个男士和四个女士排成一排,要求男女交替,则有_____种不同的排法;如果这四对夫妻围圆桌就座,要求夫妻相邻的座法有______种。
04、排列组合
1、把6个不同的口罩放到5个相同的盒子里,使得不出现空盒,有多少种不同的方法
05、图论
1、设G是有n个顶点的图,如果n是奇数,则G的正常边着色数是______
2、平面连通图所有面度数之和为a,其边数为b,a 和b 的关系
3、设图G有14个顶点,27条边,每个顶点的度只可能为3、4或5,且G有6个度为4的顶点,问G有多少个度为3的顶点?多少个度为5的顶点?
06、个数计算
1、求在[99,1000] 范围内不能被5,6,8中任何一个数整除的数的个数。
2、求小于1001且可以被3或5整除的正整数个数
3、整除2310的正奇数有___个
4、能除尽600的正整数有___个
5、求由2个0、3个2和3个5构成的八位数共有多少个
6、由2,4,6,8(数字可重复使用)这四个数字组成的n位数中(n≥2)要求含偶数个2,奇数个4且至少含1个6,数字8出现的次数不加限制。设满足这些条件的n位数的个数为an
(1)求a1, a2, a3…, an…对应的指数型母函数g(x)。
(2)求an的表达式。
7、设用数字2,4,6,8(数字可重复使用)可组成a_n个含奇数个2,偶数个6且至少含一个8的n位数(n≥2)。
(1)(2分)写出数列{a_n}的指数型母函数g(x);
(2)(3分)求出a_n的表达式。
8、求1,4,5,8,9这五个数字组成的n位数的个数,要求4,8出现的次数均为偶数,而1,5,9出现的次数不加限制
9、求方程x₁+x₂+x₃+x₄+x₅=10的正整数解的个数
10、求方程x₁+x₂+x₃+x₄=10正整数解的个数
11、求方程 t1+t2+t3+t4=20 的整数解的个数,其中 t1≥3,t2≥1,t3≥0,t4≥5
以上参考:【同等学力】06-个数计算-CSDN博客
07、谓词计算
1、设 P↓Q=¬(P∨Q),仅用联结词 ↓ 分别表示出 ¬P,P∧Q,P∨Q
2、下列公式是否正确?如正确请证明,如错误试举出反例。
(∀x)(∀y)(P(x)∧P(y)→Q(x,y))≡¬(∃x)(∃y)(P(x)∧P(y)∧¬Q(x,y))
3、个体域为 {a, b, c},将下列公式写成命题逻辑公式: (∀x)P(x)→(∃y)Q(y)
4、求 ¬(P↔Q)∧(¬P→R) 的主析取范式和主合取范式。(要求分别用极大项和极小项,以及相应的简介形式表示。)
以上参考:【同等学力】07-谓词计算-CSDN博客
08、集合证明
1、证明对于任意集合 A,B,C,已知 A∪B=A∪C, 且 A∩B=A∩C,证明 B=C
2、对任意集合 A、B,试证明 A∩B=A⇔A⊆B
以上参考:【同等学力】08-集合证明-CSDN博客
09、集合子集
1、设集合A有50个元素,则由集合A可构成________个子集。其中有_____个子集其元素个数为奇数
2、设集合A有100个元素,则A有_____个子集。其中有______个子集其元素个数为奇数。
10、小球染色
1、有t个球排成一排,其中t≥3.用红,橙、黄,绿、蓝五种颜色给这t个球染色,每一个球只能染一种颜色,如果要求染红、橙、黄色的球至少出现一个,问有多少种不同的染法
2、用红、黄、蓝色对 1×n 的棋盘方格涂色,设涂红色方格的个数是偶数且至少有一个方格涂黄色的涂色方法数为 h_{n}(n 是正整数)。
(1)试确定 h_{n} 的指数型生成函数; (2)求 h_{n}
3、有r个正方形排成一行,今用红、黄、白、蓝四种颜色给这个r个正方形染色,每个正方形只能染一种颜色,如果要求染红、黄、白色的正方形分别至少出现一个,问有多少种不同的染法
以上参考:【同等学力】10-小球染色-CSDN博客