从棋盘原点开始扔骰子,到达某一个终点的概率

本文探讨了一个棋盘游戏,玩家通过掷骰子决定棋子前进的格数,并计算了棋子恰好停在2014格的概率。通过递推公式得出该概率与2/7最为接近。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 棋盘上共有2020个格子,从1开始顺序编号。棋子初始放在第1格,通过扔骰子决定前进格子数,扔出x点就前进x格。骰子有6面,分别对应1至6;质量均匀。当棋子到达2014或超过2014,游戏结束。那么,棋子刚好到达2014的概率与______最接近。
2/3
1/2
1/3
2/7
1/6
1/7 

最终游戏停止时停的位置是2014, 2015, 2016, 2017, 2018, 2019,利用f[i]来表示到达格子i的方法数,由于到达2014之前的每个格子概率可以看作相等,那么:
f[2014] = f[2013]+...+f[2008]    -----由前6个格子得到
f[2015] = f[2013]+...+f[2009]    -----由前5个格子得到

。。。。。。

f[2019] = f[2013]                        -----由前1个格子得到

那么近似概率P = 6 / (1+..+6) = 2/7

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值