- Code vs 1154 能量项链
在Mars星球上,每个Mars人都随身佩带着一串能量项链。在项链上有N颗能量珠。能量珠是一颗有头标记与尾标记的珠子,这些标记对应着某个正整数。并且,对于相邻的两颗珠子,前一颗珠子的尾标记一定等于后一颗珠子的头标记。因为只有这样,通过吸盘(吸盘是Mars人吸收能量的一种器官)的作用,这两颗珠子才能聚合成一颗珠子,同时释放出可以被吸盘吸收的能量。如果前一颗能量珠的头标记为m,尾标记为r,后一颗能量珠的头标记为r,尾标记为n,则聚合后释放的能量为mrn(Mars单位),新产生的珠子的头标记为m,尾标记为n。
需要时,Mars人就用吸盘夹住相邻的两颗珠子,通过聚合得到能量,直到项链上只剩下一颗珠子为止。显然,不同的聚合顺序得到的总能量是不同的,请你设计一个聚合顺序,使一串项链释放出的总能量最大。
例如:设N=4,4颗珠子的头标记与尾标记依次为(2,3) (3,5) (5,10) (10,2)。我们用记号⊕表示两颗珠子的聚合操作,(j⊕k)表示第j,k两颗珠子聚合后所释放的能量。则第4、1两颗珠子聚合后释放的能量为:
(4⊕1)=10*2 *3=60。
这一串项链可以得到最优值的一个聚合顺序所释放的总能量为
((4⊕1)⊕2)⊕3)=1023+1035+10510=710。
可以看出来,这是一个环形动态规划
对于此类问题,类似于矩阵链乘,我们稍加转化,断环为链 问题就解决了
对于数量为n的能量宝石,我们申请(2n)(2*n)的数组。
举一个例子 对于能量珠(2,3) (3,5) (5,10) (10,2)我们提炼出P数组
代码如下
#include<iostream>
#include<algorithm>
#define Max 10000
#define Inf 1<<20
using namespace std;
//循环数组
int p[Max], d[Max][Max]; //d数组为状态转移数组
void dp()
{
int j;
for (int i = 0; i <= n; i++)
d[i][i] = 0;
for (int len = 2; len <= n; len++)
{
for (int i = 1; i <= n*2 - len + 1; i++)
{
j = i + len - 1;
d[i][j] = 0;
for (int k = i; k < j; k++)
{
int temp = d[i][k]+d[k + 1][j] + p[(i - 1)%n] * p[k%n] * p[j%n]; //因为p可能超界,对进行取余操作
if (temp >d[i][j]) d[i][j] = temp, solve[i][j] = k;
}
}
}
int ans = 0;
for (int i = 1; i <= n + 1; i++) //循环所得到的最大值;
ans = max(d[i][i + n - 1], ans);
cout << ans;
}
int main()
{
cin >> n;
for (int i = 0; i < n; i++)
cin >> p[i];
dp();
return 0;
}