常用的分类评价指标和回归评价指标及其Python代码实现

144 篇文章 9 订阅 ¥59.90 ¥99.00
本文详细介绍了分类模型的准确率、精确率、召回率和F1值,以及回归模型的均方误差、平均绝对误差和决定系数,并提供了Python代码示例,帮助理解并应用这些评价指标来评估模型性能。
摘要由CSDN通过智能技术生成

在机器学习和数据分析中,评价模型的性能是一项重要的任务。根据任务的不同,我们可以使用不同的评价指标来衡量模型的性能。本文将详细介绍常用的分类评价指标和回归评价指标,并提供相应的Python代码实现。

一、分类评价指标

  1. 准确率(Accuracy)

准确率是分类问题中最常用的评价指标之一,它表示模型预测正确的样本数与总样本数的比例。

from sklearn.metrics import accuracy_score

y_true = [0, 1, 1, 0
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值