在机器学习和数据分析中,评价模型的性能是一项重要的任务。根据任务的不同,我们可以使用不同的评价指标来衡量模型的性能。本文将详细介绍常用的分类评价指标和回归评价指标,并提供相应的Python代码实现。
一、分类评价指标
- 准确率(Accuracy)
准确率是分类问题中最常用的评价指标之一,它表示模型预测正确的样本数与总样本数的比例。
from sklearn.metrics import accuracy_score
y_true = [0, 1, 1, 0
在机器学习和数据分析中,评价模型的性能是一项重要的任务。根据任务的不同,我们可以使用不同的评价指标来衡量模型的性能。本文将详细介绍常用的分类评价指标和回归评价指标,并提供相应的Python代码实现。
一、分类评价指标
准确率是分类问题中最常用的评价指标之一,它表示模型预测正确的样本数与总样本数的比例。
from sklearn.metrics import accuracy_score
y_true = [0, 1, 1, 0