用于机器学习的Matlab的数据类型

参考《机械工业出版社的matlab》与《机器学习与机器学习算法视角》

矩阵相关

函数功能
zeros零矩阵
ones全1矩阵
eye单位矩阵
rand/randn随机数矩阵
isnumeric判断是否为数值型矩阵
isscalar判断矩阵是否为1*1
size返回矩阵大小

元胞数组

matlab特有的一种变量形式,可以将任何类型的数据存储在其中。元胞数组使用{ }表示其他的写法同矩阵。可以使用cell函数来初始化元胞数组。使用celldisp显示元胞数组内容。

函数功能
cell初始化元胞数组
cellstr从字符数组中生成元胞数组
iscell判断是否为元胞数组
iscellstr判断元胞数组中是否只含字符串
celldisp显示元胞数组内容

数据结构

使用struct创建数据结构,这样的目的是方便管理,避免冲突。效果如下,可以感受一下。
在这里插入图片描述

函数功能
struct初始化带或不带字段的结构体
isstruct判断是否为结构体
isfield判断字段是否存在于结构体
fieldnames获取元胞数组中结构体的字段
rmfield从结构体中删除字段
deal为结构体中的字段设置值

数值类型

默认任何数据都是双精度的,也可以指定为其他类型,包括single、unit8、unit16、unit32、unit64、logical。

图像

支持GIF、JPG、TIFF、PNG、HDF、FITS、BMP格式,可以使用imread读取图像。

函数功能
imread读取图像
imfinfo收集文件信息
imformats判断结构体是否存在一个字段
imwrite将数据写入图像文件
image从数组中显示图像
imagesc显示映射至当前色图的图像数据
imshow显示图像,优化图形,坐标轴和图像对象属性,并将数组或文件名作为输入
rgb2gray将RGB图像或真彩认颜色图转换为灰度图
ind2rgb将索引图像转换为RGB图像
rgb2ind将RGB图像转换为索引图
fitsread读取FITS文件中的数据
fitswrite将图像写入FITS文件
fitinfo在数据结构中返回有关FITS文件的信息
fitsdisp对于文件中所有头文件数据单元显示FITS文件元数据

数据存储

允许用户与那些因为内容过大而内存无法容纳的数据文件进行交互。

函数功能
datasetore为大型数据集合创建数据存储
read从数据存储中读取数据子集
readall读取数据中的全部数据
hasdata检查数据存储区是否还有更多数据
reset重置为默认值
partition引用数据存储中的一个分区数据
numpartitions预估一个合理的分数区
imagedatastore图像数据的数据存储
tabulartextdatastore表格文本文件的数据存储
spreadsheetdatastore用于电子表格文件的数据存储
filedatastore自定义格式文件的数据存储
keyvaluedatastore键-值对数据的数据存储
databasedatastore数据库连接,提供数据库工具箱

tall 数组

它允许数组中超出内存大小的更多行。可以用它们来处理数百万行的数据存储。

函数功能
tall初始化tall数组
gather执行请求操作
summary在命令行界面中显示摘要信息
head访问tall数组的第一行
tail访问tall数组的左后一行
istall判断是否是tall数组
write将tall数组写入磁盘

稀疏矩阵

稀疏矩阵的大多数元素为0,matlab会值储存非0元素及索引来减少资源占用。

函数功能
sparse从完整矩阵或索引与值列表中创建稀疏矩阵
issparse盘符是你矩阵是否为稀疏矩阵
nnz稀疏矩阵中非0元素的数目
spalloc为系数矩阵分配非零空间
spy可视化稀疏模式
spfun选择性地将函数应用与稀疏矩阵的非0元素
full将稀疏矩阵转化为完整模式

表与分类数组

表允许将表格数据与元数据共同存储在一个工作区的变量中。

函数功能
table工作区中创建包含数据的表
readtable从文件中创建表
join通过变量匹配来合并表
innerjoin两个表的内联接,只保留表中的匹配行
outerjoin外联接,保留两个表中的所有行
stack将多个表变量的数据堆叠到一个变量中
unstack将单个变量中的数据拆分至多个变量中
summary计算并显示表的摘要数据
categorical创建离散分类数据的数组
iscategorical判断是否为分类数组
categories数组中的分类列表
iscategories判断是否为指定类别
addcats将数组添加至类别数组中
removecats从分类数组中删除类别
mergecats合并分类数组中的类别
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值