DFS求解迷宫问题(输出所有的路径)

问题:给出一个n*n的迷宫,起点为(0,0),终点为(n-1,n-1).可以向上、下、左、右四个方向走.

任务:1.判断是否有可行路径

           2.如果有可行路径,输出所有的可行路径.

————————————————————————————————————————————————————

如下图所示,当前位置为中间点,如果中间点不是终点,那么会从4个方向进行下一步探测,进入到一个新的点之后,再从4个方向(事实上不会)再进行同样的探测.之前走过的点需要将这个点标记为[走过].


代码如下:

#include<iostream>
#include&
问题描述: 以一个m*n的长方阵表示迷宫,0和1分别表示迷宫中的通路和障碍。设计一个程序,对任意设定的迷宫,求出从入口(0,0)到出口(m-1,n-1)的通路和通路总数,或得出没有通路的结论。例如下图, 0(入口) 1 0 1 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0(出口) 从入口到出口有6条不同的通路。 而下图: 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 1 1 0 1 0 1 1 1 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 1 0 1 1 1 1 0 0 1 1 1 0 0 0 1 0 1 1 1 0 0 0 0 0 0 从入口到出口则没有通路。 算法设计: 给定一个m*n的长方阵表示迷宫,设计算法输出入口到出口的通路和通路总数,或得出没有通路的结论。 算法提示: 和皇后问题与分书问题类似。可以用二维数组存储迷宫数据,对于迷宫中任一位置,均可约定有东、南、西、北四个方向可通。从当前位置a(用(x,y)表示一个位置,假定它是以向右的x轴和向下的y轴组成的平面上的一个点)出发依次尝试四个方向是否有路,若某个方向的位置b可通,则按照同样的方法继续从b出发寻找。若到达出口,则找到一条通路。 数据输入: 由文件input.txt 提供输入数据。第一行是m和n的值,空格分隔,其后共m行。每行有n个数字,数和数之间用空格分隔。 结果输出: 将计算出的所有从入口到出口的通路输出到文件output.txt 中。若没有通路,则将0写入文件中。
深度优先搜索(DFS)是一种常用的图遍历算法,可以用来解决迷宫问题。下面是一种基于DFS求解迷宫所有路径的算法: 1. 定义一个二维数组maze表示迷宫,其中0表示可走的路,1表示墙,2表示已经走过的路。 2. 定义一个栈stack,用来存储走过的路径。 3. 定义一个列表paths,用来存储所有走过的路径。 4. 定义一个函数dfs(x, y)表示从坐标为(x, y)的位置开始走迷宫。 5. 在函数dfs(x, y)中,如果当前位置为终点,则将stack中的路径添加到paths中,并返回。 6. 如果当前位置不是终点,则将当前位置标记为已经走过,然后按照上、右、下、左的顺序依次尝试往下一个位置走。 7. 如果下一个位置是可走的路,则将其入栈,并递归调用dfs函数继续走迷宫。 8. 如果下一个位置已经走过或者是墙,则不再尝试走这个方向。 9. 最后,将当前位置标记为未走过,将stack中的最后一个位置弹出,表示回溯到上一步。 下面是Python代码实现: ```python maze = [ [0, 1, 0, 0], [0, 0, 0, 1], [1, 0, 1, 0], [0, 0, 0, 0] ] stack = [(0, 0)] paths = [] def dfs(x, y): if x == len(maze) - 1 and y == len(maze[0]) - 1: paths.append(list(stack)) return maze[x][y] = 2 for dx, dy in [(0, 1), (1, 0), (0, -1), (-1, 0)]: nx, ny = x + dx, y + dy if 0 <= nx < len(maze) and 0 <= ny < len(maze[0]) and maze[nx][ny] == 0: stack.append((nx, ny)) dfs(nx, ny) stack.pop() maze[x][y] = 0 dfs(0, 0) for path in paths: print(path) ``` 以上代码输出所有从起点到终点的路径
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值