原题中文翻译:(来自lucky 猫)
Arbitrage
所謂的「三角套匯(arbitrage)」就是在幾種外幣中做金錢的交易,期待從匯差中獲取少許的利潤。例如:1 元美金可以買 0.7 英鎊,1 元英鎊可以買 9.5 法朗,1 元法朗可以買 0.16 美金。所以如果我們把 1 元美金換成英鎊,再把英鎊換成法朗,最後再把法朗換回美金,那麼最後得到的美金將是:1*0.7*9.5*0.16=1.064 美元。也就是說我們可以從中獲取匯差 0.064 美元,相當於賺了 6.4% 。
請你寫一個程式找出是否有這樣套匯的情況,可以獲取如上所述的利益。
要產生一個成功的套匯,在換外幣的過程中,開始的幣種一定得等於最後的幣種。但是從哪一種開始都可以。
Input
輸入含有多組測試資料。
每組測試資料的第一列,有一個整數 n(2 <= n <= 20),代表共有多少種幣種。
接下來的 n 列代表這n種外幣之間的匯率轉換表。每列有 n-1 個數。這 n-1 個數分別代表該幣種1元可以換取其他幣種多少元(自己換自己當然是 1,所以不會出現)。所以第1列的 n-1 個數依序分別代表第1種外幣1元可以換取,第2種外幣,第3種外幣,第4種外幣…第n種外幣各多少元。而第2列的 n-1 個數依序分別代表第2種外幣1元可以換取,第1種外幣,第3種外幣,第4種外幣…第n種外幣各多少元。依此類推,第n列的 n-1 個數依序分別代表第n種外幣1元可以換取,第1種外幣,第2種外幣,第3種外幣…第n-1種外幣各多少元。
請參考Sample Input。
Output
對每組測試資料輸出一列,代表一連串幣種轉換的動作,並且套匯獲利需大於 1%( > 0.01)。如果有不止一種轉換可以獲取超過 1%的利益,請輸出轉換次數最少的。如果轉換次數最少的不止一種,那麼任何一種都可以。請注意:在這裡只要求轉換次數最少,並沒有要求獲利要最大,只要能大於 1% 就可以了。
另外,國稅局還規定最多只能轉換 n 次(n 是幣種的數目)。像 1, 2, 1 這樣的轉換次數為 2。
如果在 n 次的轉換內都無法獲利超過 1%,請輸出 no arbitrage sequence exists。
Sample Input
3
1.2 .89
.88 5.1
1.1 0.15
4
3.1 0.0023 0.35
0.21 0.00353 8.13
200 180.559 10.339
2.11 0.089 0.06111
2
2.0
0.45
Sample Output
1 2 1
1 2 4 1
no arbitrage sequence exists
#include <bits/stdc++.h>
using namespace std;
//fstream in,out;
const int inf=99999;
double dp[21][21][21],mark[21][21][21];
double rate[21][21];
int p;
void get_path(int i,int j,int s)
{
if(s==0)
{
cout<<i;
return;
}
get_path(i,mark[i][j][s],s-1);
cout<<" "<<j;
}
int main()
{
ios::sync_with_stdio(false);
int n,s;
while(cin>>n)
{
memset(mark,0,sizeof(mark));
memset(dp,0,sizeof(dp));
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)
{
if(i==j)
{
rate[i][j]=1;
dp[j][i][1]=1;
}
else
{
cin>>rate[i][j];
dp[i][j][1]=rate[i][j];
mark[i][j][1]=j;
}
}
}
for(s=2;s<=n;s++)
{
for(int k=1;k<=n;k++)
{
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)
{
if(dp[i][j][s]<dp[i][k][s-1]*rate[k][j])
{
dp[i][j][s]=dp[i][k][s-1]*rate[k][j];
mark[i][j][s]=k;
}
}
}
}
int i;
for(i=1;i<=n;i++)
{
if(dp[i][i][s]>1.01)
{
p=i;
break;
}
}
if(i<=n)
break;
}
if(s>n)
cout<<"no arbitrage sequence exists";
else
get_path(p,p,s);
cout<<endl;
}
return 0;
}
解答:
在lrj的白书上寻思找道图论的题做做,结果是一道动态规划= =orz
这题想了半天,想到了用floyed算法的改进,但是卡在了如何保证套汇小于0.01的情况下。刚开始的思路设置dp[i][j]为从i种钱币套汇到j种钱币的利率,设置sum[i][j]为从i套汇到j的交换次数,然后打算在每次计算dp[i][j]满足大于0.01的同时计算计算sum[i][j],并找出最小的,想到半道发现这种想法有缺陷,因为在dp[i][j]在进行状态转移的时候参考的条件是sum[i][j],所以dp[i][j]获得的并不是最优解。后来想到增加状态的方法,但是没继续想下去,如果继续想说不定就做出来了,可惜这么一道好题。总结一句话:
如果一个子问题在受到限制无法转移到最优解,或者要求在某个条件s下得到最优值dp[i][j][k]…,那么首先应该考虑增加一个状态s变成dp[i][j][k]…[s]来处理!
代码参考了大神的博客:http://www.cnblogs.com/scau20110726/archive/2012/12/26/2834674.html
以下是引用大神博客中的话:
DP构建(仿照Floyd)
这题说难挺难的,现在想想好像也不太难,是因为想复杂了。其实这题的要求不算多,它仅仅是要求最后转换回到出发时的那种硬币并且获利大于0.01,而转换次数不能超过n次,转换次数越少越好,然后输出最短的路径。注意:题目并没有说要你获利最大,只是是获利>=0.01即可,另外题目对路径并没有什么特殊要求,仅仅是要求不能超过n,在路径长度相同的情况任意一条都可以的。
所以我们就抓住一点:转换次数!!!!!!
也就是说每转换一次,我们就去找所有的货币,看他们回到自己的时候那些货币的获利已经大于0.01了,如果有货币的获利已经大于0.01了,那么我们的算法就结束了,就输出这种货币的转换路径(就算有多种货币的获利都大于0.01都好,输出哪种货币都行,因为题目也没有要求)
我们应该写一个最外层的循环,是表示第几次转换的,这个循环不能大于n,因为最多只能转换n次不管成功还是失败都要结束
然后,用转换次数来做最外层的循环这个策略是正确的,为什么呢?假设当前是第i+1次转换,那么是需要用到第i次转化的信息的!!!
为什么呢?我们可以回顾一下Floyd的本质。
原本的Floyd是一个三维数组 dp[k][i][j]=max{ dp[k-1][i][j] , dp[k-1][i][k]+dp[k-1][k][j] }
我们平时写的Floyd都是二维的,其实是三维的压缩回来的,没什么能压缩掉最高的那一维呢?单单看状态转移方程都可能看出来,当前要构建的dp[k][i][j]其实只和之前的dp[k-1][][]有关,也就是现在的信息完全是基于前一次的信息推导出来的。这就像我们的滚动数组一样
所以我们来定义个状态dp[i][j][s] i和j就是第i种和第j种货币,s是转换次数,s从1开始到n。也就是说,在第s次转换中,试图从i转化内j
那么状态转移方程是什么呢? dp[i][j][s]=max{ dp[i][j][s-1] , dp[i][k][s-1]*g[k][j]}
g[i][j]是输入的数据也就是两两货币之间的转化率,其实可以保存在dp[i][j][0]里面
那么这个状态转移方程是什么意思呢?就是说在前一次转化后,现在想从i转换到j,试图通过k,看能不能让值更大,能的话就变大(变大一定不吃亏,因为题目也没要求货币变成多少,只是要求要大于0.01,所以当前要是能变大的话那当然变大)