算法:梯度下降法求最优解,python源码

本文通过一个简单的例子解释了梯度下降法,并提供了Python源码,用于找到最优解。利用梯度下降法,可以预测如温度传感器数据等,当实际测量值与理论最优解偏差较大时,识别为异常情况。
摘要由CSDN通过智能技术生成

简单解释:比如拿温度传感器来说,就是根据之前一段时间的温度数据计算下当前理论上应该测量到的温度,如果超出这个最优解的一定比例,就可以理解为突发状况了

 

代码如下:

# _*_ coding: utf-8 _*_
# 作者: 黄智
# 邮箱: 99923309@qq.com
 
# 训练集
# 每个样本点有3个分量 (x0,x1,x2)
#x = [(1, 0., 3), (1, 1., 3), (1, 2., 3), (1, 3., 2), (1, 4., 4)]
x = [(1), (2), (1), (2), (1.1), (1.2), (1.3), (1.4), (1.5)]
# y[i] 样本点对应的输出
y = [85.364, 77.217205, 75.195834, 90.105519, 89.342380, 70.123323, 80.12233, 88.34353, 98.34353]
 
# 迭代阀值,当两次迭代损失函数之差小于该阀值时停止迭代
epsilon = 0.0001
 
# 学习率
alpha = 0.01
diff = [0, 0]
max_itor = 1000
error1 = 0
error0 = 0
cnt = 0
m = len(x)
 
 
# 初始化参数
theta0 = 0
theta1 = 0
theta2 = 0
 
while True:
    cnt += 1
 
    # 参数迭代计算
    for i in range(m):
        # 拟合函数为 y = theta0 * x[0] + theta1 * x[1] +theta2 * x[2]
        # 计算残差
        #diff[0] = (theta0 + theta1 * x[i][1] + theta2 
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值