量子近似优化算法(QAOA)加速大规模向量搜索

量子近似优化算法(QAOA)在加速大规模向量搜索任务中展现出独特优势,尤其适用于高维向量相似性计算和近似最近邻(ANN)搜索。以下是其技术实现路径、优势及实践方案:


一、QAOA加速向量搜索的核心原理

1. 问题映射

将向量搜索转化为 二次无约束二元优化(QUBO) 问题:
[
\text{Minimize } \sum_{i<j} w_{ij}x_i x_j + \sum_i w_i x_i
]

  • 变量:(x_i \in {0,1})(表示是否选择第i个向量)
  • 权重:(w_{ij} = 1 - \text{cosine_similarity}(v_i, v_j))
2. 量子优势
  • 叠加态并行评估:同时探索多个候选向量的组合。
  • 量子隧穿效应:避免经典算法陷入局部最优。
3. 算法流程
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小赖同学啊

感谢上帝的投喂

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值