量子近似优化算法(QAOA)在加速大规模向量搜索任务中展现出独特优势,尤其适用于高维向量相似性计算和近似最近邻(ANN)搜索。以下是其技术实现路径、优势及实践方案:
一、QAOA加速向量搜索的核心原理
1. 问题映射
将向量搜索转化为 二次无约束二元优化(QUBO) 问题:
[
\text{Minimize } \sum_{i<j} w_{ij}x_i x_j + \sum_i w_i x_i
]
- 变量:(x_i \in {0,1})(表示是否选择第i个向量)
- 权重:(w_{ij} = 1 - \text{cosine_similarity}(v_i, v_j))
2. 量子优势
- 叠加态并行评估:同时探索多个候选向量的组合。
- 量子隧穿效应:避免经典算法陷入局部最优。