【comfyui教程】Stable Diffusion | SD的老舅ComfyUI来了,节点式工作流,分部控制出图_sd comfyui 工作流

大家好我是AIGC阿道夫

前言

ComfyUI 是一个基于节点流程式的stable diffusion AI 绘图工具WebUI,界面版块基本和stable diffusion一样,只是每个版块被拆分成节点,可以灵活控制连接,这样的工作流和完善的可复现性,用户可以精准的控制每个版块的设置,达到控制变量的目的,但节点式的工作流也提高了一部分使用门槛。用过3D渲染的同学应该对这种节点控制的布局很熟悉。

方便大家看,我把板块调整为竖版,有一定SD基础的同学可以看到这其实就是SD的界面板块打散:

所有的AI设计工具,安装包、模型和插件,都已经整理好了,👇获取~

请添加图片描述

ComfyUI有以下特点:

优点:

1.上限高,更适合复杂长线的大型工作

2模块化工作流

3.可视化

4.启动速度快、运行速度快

5.对硬件无要求,CPU可运行

6.可排队运行任务

7.工作流只需搭建一次可直接保存

8.是根据SD原理直接建立的操作界面

9.可以自己设计需要的模块和模组,代码友好

10.ctrlnet等主流插件都支持。还提供webui无法支持的功能,比如接通ChatGPT、翻译等的特殊模块组,

缺点(相信以后会慢慢完善的):

1.上手难度高

2.一些插件还未被写成运行模块

二、ComfyUI下载安装

原生网址:https://github.com/comfyanonymous/ComfyUI

B站UP主ZHO大佬的汉化包:https://github.com/ZHO-ZHO-ZHO/ComfyUI-ZHO-Chinese

今天是直接用到的ZHO的汉化包,有精简版和标准版,我用的是标准版,此安装包文末领取。

注意:为了控制压缩包的大小,整合包内没有放置SD模型,

需要自己把模型到models\checkpoints里,或选择与WebUI模型路径共享),如果已经部署SD了,可以通过路径共享,方法是:

1、在ComfyUl文件夹中找到extra model paths.yamlexample文件右键用记事本打开文件;

2、把里面“path/to/stable-diffusion-webui/”换成你放置WebU模型的文件夹路径(路径中不要出现中文),切记,要改为SD的根目录

3、点击文件-保存;

4、关闭文件,右键重命名文件,把名称中的.example去掉,变为extra model paths.yaml。重启之后,主模型加载器就会自动加载到模型。

安装好了之后,可以启动了,这里有两种启动方式:

1、CPU启动;

2、GPU英伟达显卡启动,显卡好的话就用这个。

另外,后期Comfy更新升级可以用,主目录下的update文件夹里面的升级脚本升级。

二、ComfyUI基础流程

启动后,界面是空白的,模块没有在界面上显示,需要自定义添加。

这时候有两种方法可以执行,推荐第二种。

1、鼠标右键,自主添加生成图片需要的模块;

可以直接用ZHO汉化的模块组:

界面上就会弹出对应的窗口,刚刚加的是主模型加载器。

也可以鼠标双击界面,弹出搜索窗口,直接搜索常用版块:

一般会有主模型/提示词(clip模型)/采样器/初始潜空间(参数设置)/VAE解码器/图像保存。

通过节点把每一个板块连接起来,鼠标点住节点不松,拖拽就会分裂衍生一个节点,以串联下一个节点。

2、直接加载现有的工作流

安装包里面准备了一些个人的工作流,当然我们也可以自己设置好,保存工作流,下次直接使用,下面是直接加载默认工作流后的界面。

工作流确认好了之后,就可以生成图片了,这边用的是文生图,那先试一下生成一只猫:

1、确认模型:

2、简单写一下提示词:

3、设置尺寸和批次:

4、设置采样等参数

可以看到这里多了一个降噪的参数设置

5、设置图形名称相关的

6、点击右下角生成

图片保存在这里:\Zho_Chinese_ComfyUI_windows_portable\ComfyUI\output

设置流程基本上和SD一样,速度会相对快很多。

三、其他补充说明

1、设置按钮

可以根据个人需求做一些调整:

2、快捷指令

按键绑定说明
Ctrl + Enter将当前图形排队以供生成
Ctrl + Shift + Enter将当前图形排列为第一个生成图形
Ctrl + S保存工作流程
Ctrl + O加载工作流
Ctrl + A选择所有节点
Ctrl + M禁用/取消禁用选定节点
删除/退格删除选定的节点
ctrl+Delete/退格键删除当前图形
Space
按住并移动光标时,四处移动画布
Ctrl/Shift +单击将单击的节点添加到选择中
Ctrl + C/Ctrl + V复制并粘贴选定的节点(不保持与未选定节点输出的连接)
Ctrl + C/Ctrl + Shift + V复制并粘贴选定的节点(保持未选定节点的输出与粘贴节点的输入之间的连接)
Shift +拖动同时移动多个选定的节点
Ctrl + D加载默认图表
Q切换队列的可见性
H切换历史的可见性
R刷新图表
双击LMB打开节点快速搜索选项板

对于macOS用户,Ctrl也可以替换为Cmd

3、提示词权重

使用()来更改单词或短语的权重,如:(prompt:1.2)或(promp:0.8)。()的默认强调值为1.1倍。要在实际提示中使用()字符,请像\(或\)一样对它们进行转义。

对于通配符/动态提示,可以使用{day|night}。对提示进行排队时,前端会随机将“{wild|card|test}”替换为“wild”、“card”或“test”。要在实际提示中使用{}个字符,请像:\{或\}那样转义它们。

关于ComfyUI的入门介绍就先到这里,后面再做详细的应用操作分析那个,大家赶紧试一下吧。

也许有人会说连SD还没摸清楚,一下子出来这么多,哪里学得完啊,其实多种同类型的软件的竞争,恰恰会促进产品的体验和功能升级,受益的还是我们玩家,在深度学习某个适合自己的软件的时候,适当的了解一下同类型的产品,还是可以扩展一下自己的思维宽度的。

为了帮助大家更好地掌握 ComfyUI,我在去年花了几个月的时间,撰写并录制了一套ComfyUI的基础教程,共六篇。这套教程详细介绍了选择ComfyUI的理由、其优缺点、下载安装方法、模型与插件的安装、工作流节点和底层逻辑详解、遮罩修改重绘/Inpenting模块以及SDXL工作流手把手搭建。

由于篇幅原因,本文精选几个章节,详细版点击下方卡片免费领取

请添加图片描述

一、ComfyUI配置指南
  • 报错指南
  • 环境配置
  • 脚本更新
  • 后记

img

二、ComfyUI基础入门
  • 软件安装篇
  • 插件安装篇

img

三、 ComfyUI工作流节点/底层逻辑详解
  • ComfyUI 基础概念理解
  • Stable diffusion 工作原理
  • 工作流底层逻辑
  • 必备插件补全

img

四、ComfyUI节点技巧进阶/多模型串联
  • 节点进阶详解
  • 提词技巧精通
  • 多模型节点串联

img

五、ComfyUI遮罩修改重绘/Inpenting模块详解
  • 图像分辨率
  • 姿势

img

六、ComfyUI超实用SDXL工作流手把手搭建
  • Refined模型
  • SDXL风格化提示词
  • SDXL工作流搭建

img

img
由于篇幅原因,本文精选几个章节,详细版点击下方卡片免费领取

关于ComfyUI相关的Stable Diffusion项目资源或教程的信息,在提及Physics-Based Human Motion Modelling for People Tracking的内容中并未直接涉及[^1]。然而,针对ComfyUIStable Diffusion结合使用的场景,可以提供一些通用指导。 ### ComfyUI简介 ComfyUI是一个用于创建形界面应用程序的框架,允许开发者通过拖拽组件来构建用户界面。对于希望简化模型部署流程并使AI工具更易于访问的研究人员和开发人员来说,这是一个非常有价值的平台。 ### Stable Diffusion概述 Stable Diffusion是一种基于深度学习的技术,旨在生成高质量像的同时保持计算效率。该技术利用预训练神经网络将随机噪声转换成逼真的片,广泛应用于艺术创作、设计等领域。 ### 结合两者的方法 为了实现ComfyUIStable Diffusion的有效集成: - **安装环境配置**:确保已正确设置Python虚拟环境,并按照官方文档完成必要的依赖项安装。 - **API接口调用**:研究如何通过RESTful API或其他形的数据交换机制连接到远程运行的Stable Diffusion服务端实例。 - **自定义节点开发**:探索编写特定于Stable Diffusion操作的新控件的可能性,比如参数调整滑块、样迁移选项卡等。 ```python import requests def generate_image(prompt, api_key): url = "http://localhost:7860/sdapi/v1/txt2img" payload = { "prompt": prompt, "steps": 50, "cfg_scale": 7.5, "width": 512, "height": 512, "seed": -1 } headers = {"Authorization": f"Bearer {api_key}"} response = requests.post(url, json=payload, headers=headers) return response.json() ``` 此代码片段展示了如何向本地托管的服务发送请求以根据给定提示词生成新像的一个简单例子。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值