[论文快读] FCN (2014)

标题:Fully Convolutional Networks for Semantic Segmentation
作者:Jonathan Long, Evan Shelhamer, Trevor Darrell
地址:https://arxiv.org/abs/1411.4038
摘要:
abs
参考代码:https://github.com/pochih/FCN-pytorch/issues

FCN的思想在LeNet之前就提出过,但是对FCN进行以像素级预测(pixelwise prediction)和有监督预训练(fine-tuning)进行端到端的训练则是本文首创。该思想在后续的OverFeat等架构里面被反复用到,所以有必要读一下原文。

本文的工作包括四部分:FCN design, dense prediction tradeoffs, in-network upsampling和multilayer combinations。

FCN网络的仅有卷积层、池化或者激活函数层组成(文中记作 f k s ( x i j ) f_{ks}(x_{ij}) fks(xij))。其loss函数的形式决定了任务(如分割)。分割任务中,需要对feature map的每个像素分别计算loss,求和之后作为总的loss。这样,对于总的loss执行SGD等价于对每个小的loss分别执行SGD。

对分类网络执行fine-tuning的操作包括把全联接层改成若干个1*1的卷积(如图)
在这里插入图片描述
没有了全联接层,也就意味着input不再需要warp和crop成特定size,任意大小的输入都能获得一个稍小的“hot map”(不一样大是因为池化的过程产生了降采样)。后续的任务是把该hot map映射到原图size。实验显示,AlexNet的finetuning效果优于GoogLeNet。

文中介绍了一种升采样方法——shift-and-stitch。该方法在OverFeat中提到过,这两篇文章说的挺明白的:https://blog.csdn.net/qq_35732097/article/details/79027095 的3.3、3.4节和 https://www.jianshu.com/p/e534e2be5d7d 介绍地挺明白的,这里不再赘述。值得一提的是,琢磨了半天shift-and-stitch,结果最后作者说这个方法的效果不如解卷积(deconvolution)的双线性插值法效果好,“所以我们没有用它”(||-_-)

虽然deconvolution已经足够好了,但是作者又憋了一个大招——deep jet。

deep jet的key idea是跨层连接,这和ResNet中的shortcut倒是有异曲同工之妙。由于整个网络的低层所包含的信息比高层丰富,所以把低层的池化输出和高的deconvolution连接起来,把原来的线状结构组成DAG(有向无环图)状结构,即可得到性能更加优异的模型。
在这里插入图片描述

# FCN16s
def forward(self, x):
    output = self.pretrained_net(x) #包含了5个池化层的输出
    x5 = output['x5']  # size=(N, 512, x.H/32, x.W/32)
    x4 = output['x4']  # size=(N, 512, x.H/16, x.W/16)

    score = self.relu(self.deconv1(x5))               # size=(N, 512, x.H/16, x.W/16)
    score = self.bn1(score + x4)                      # element-wise add, size=(N, 512, x.H/16, x.W/16)
    score = self.bn2(self.relu(self.deconv2(score)))  # size=(N, 256, x.H/8, x.W/8)
    score = self.bn3(self.relu(self.deconv3(score)))  # size=(N, 128, x.H/4, x.W/4)
    score = self.bn4(self.relu(self.deconv4(score)))  # size=(N, 64, x.H/2, x.W/2)
    score = self.bn5(self.relu(self.deconv5(score)))  # size=(N, 32, x.H, x.W)
    score = self.classifier(score)                    # size=(N, n_class, x.H/1, x.W/1)

    return score  # size=(N, n_class, x.H/1, x.W/1)
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Namespace(命名空间)是一种在编程中用来区分各种不同命名元素的机制。它可以将不同的程序元素(变量、函数、类等)进行分组,使得它们在同一个命名空间下能够互相区分。在不同的命名空间中,可以定义具有相同名称的元素,而不会产生冲突。 快读namespace可以理解为快速了解命名空间的意思。在当前广泛使用的编程语言中,命名空间是一种非常常见的概念,如C++中的命名空间、Python中的模块和包、Java中的包等。通过快速了解命名空间,我们可以更好地进行模块化的开发,避免命名冲突,提升代码的可读性、可维护性和可重用性。 了解命名空间的重要性在于,它可以分隔不同模块之间的代码,使得每个模块可以独立开发和测试。在大型项目中,各个模块的开发往往由不同的开发人员负责,通过使用命名空间,可以避免不同模块中的命名冲突,同时也方便了代码的组织和管理。 在编程中,通过使用命名空间,我们可以更好地控制程序的作用域,避免全局变量的滥用。命名空间可以使得变量和函数的作用范围被限制在一个特定的范围内,有利于代码的结构化和模块化。 总而言之,快读命名空间是指通过了解命名空间的概念和使用方法,可以更好地进行模块化开发,提升代码的可读性和可维护性。同时,对于从事软件开发的人来说,掌握命名空间的概念也是非常重要的。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值