FCN
用 [TOC]
来生成目录:
1 网络架构
整个alexnet网络的架构如下图所示:
注意:输入层的大小其实是227*227
8大模块
整个网络可以分成8个大模块,其中前5模块四卷积模块,用于提取图片特征,后3个模块是全链接层,用于图像分类!
前2个模块
34模块
5模块
6模块
78模块
2 激活函数
Hinton提出使用Relu激活函数效果更好!
从ReLU提出之后相继又出现很多新的激活函数,如PReLU,Leaky-ReLY,Maxout等。
3 Dropout
可以利用78模块集成学习的思想来理解Dropout,全连接中训练多个若分类器,在识别阶段在来构成一个强分类器。Dropout比Without Dropout在训练阶段的准确率要低,但测试阶段的准确率要高,范化能力更强。
4 多GPU通信
5 网络细节和特点
上图右侧是论文中比较创新的地方,可以看出Alexnet是人工智能第三次爆发的开山之作!
参考文献:
[alexnet]:ImageNet Classification with Deep Convolutional Neural Networks