YOLOv8模型训练说明文档
获取数据集
方式一:通过一些数据集网站获取
-
https://www.cvmart.net/
-
https://aistudio.baidu.com/datasetdetail/50329
-
https://universe.roboflow.com/
-
https://www.kaggle.com/datasets
注意:后面两个可能需要科学上网,1和3比较好用
方式二:自己收集素材标记
素材收集
素材也可以通过方式一先搜索一个近似的,比如当需要识别开个关门的时候,可以搜多个门的数据集,然后将这些门分类成为开门和关门,这样就有了基础的巡检素材
素材标记
LabelImg与使用
1、安装anaconda
Download Anaconda Distribution | Anaconda
需要输入邮箱,然后通过邮箱连接下载
2、新建一个conda环境
以下命令要在Anaconda Prompt中执行
# 添加一个基础环境目录,如果不执行,新建的环境没有名称,切换的时候麻烦
conda config --append envs_dirs D:\anaconda3\envs
# 添加一个基础环境,最后以及是环境名
conda create --prefix=D:\anaconda3\envs\labelimg python=3.12
# 切换环境
conda activate labelimg
# 安装labelimg,过程可能会报错,缺少系统文件,根据错误查找解决办法即可
pip install labelimg
# 打开labelimg
labelimg
3、labelimg用法
修改数据集类型,切换为yolo
修改保存txt标记文件的位置
打开存放图片文件的文件夹
按【W】开始,点击图片拖动,选中要标记的内容
在对话框中输入标记实体的名称
然后按【D】下一个,按【A】上一个,每次处理完一张图片都会提示保存,选择【ok】即可
开始构建训练目录
建议在一开始的时候就把训练图片和验证的图片分开,分别标记,如果是下载的数据集,则应该直接包含了最少这两部分,也有可能还包含了test测试部分
新建一个conda环境
1、安装yolo
# 添加一个基础环境,最后以及是环境名
conda create --prefix=D:\anaconda3\envs\yolo python=3.12
# 切换环境
conda activate yolo
# 安装yolo
pip install ultralytics
构建训练目录
# 训练目录结构
├─datasets
│ ├─images # 图片
│ │ ├─train # 训练图片
│ │ └─val # 验证图片
│ └─labels # 标记
│ ├─train # 训练标记 标记文件和图片文件同名,另外会多一个class.txt的文件
│ └─val # 验证标记 标记文件和图片文件同名,另外会多一个class.txt的文件
├─data.yaml # yaml配置文件,具体内容说明如下
data.yaml文件说明
# 训练图片位置
train: .\datasets\images\train
# 验证图片位置
val: .\datasets\images\val
# 标记种类个数
nc: 2
# 标记内容
names: ['open', 'close']
执行训练命令
yolo train data=./data.yaml epochs=10
获取pt文件
打开runs\detect\train\weights
目录(与yaml同级),找到best.pt文件,就可以开始使用模型了