一道有意思的微积分题&上期微积分题修正

上期微积分毒瘤题中最后一题这样做比较方便:
lim ⁡ x → + ∞ ln ⁡ ( 1 + 3 x ) ln ⁡ ( 1 + 2 x ) = lim ⁡ x → + ∞ ln ⁡ 3 x + ln ⁡ ( 1 3 x + 1 ) ln ⁡ 2 x + ln ⁡ ( 1 2 x + 1 ) = lim ⁡ x → + ∞ x ln ⁡ 3 + ln ⁡ ( 1 3 x + 1 ) x ln ⁡ 2 + ln ⁡ ( 1 2 x + 1 ) = lim ⁡ x → + ∞ ln ⁡ 3 + 1 x ln ⁡ ( 1 3 x + 1 ) ln ⁡ 2 + 1 x ln ⁡ ( 1 2 x + 1 ) = ln ⁡ 3 ln ⁡ 2 \lim\limits_{x\to+\infin}\frac{\ln(1+3^x)}{\ln(1+2^x)}=\lim\limits_{x\to+\infin}\frac{\ln3^x+\ln(\frac{1}{3^x}+1)}{\ln2^x+\ln(\frac{1}{2^x}+1)}=\lim\limits_{x\to+\infin}\frac{x\ln3+\ln(\frac{1}{3^x}+1)}{x\ln2+\ln(\frac{1}{2^x}+1)}=\lim\limits_{x\to+\infin}\frac{\ln3+\frac{1}{x}\ln(\frac{1}{3^x}+1)}{\ln2+\frac{1}{x}\ln(\frac{1}{2^x}+1)}=\frac{\ln3}{\ln2} x+limln(1+2x)ln(1+3x)=x+limln2x+ln(2x1+1)ln3x+ln(3x1+1)=x+limxln2+ln(2x1+1)xln3+ln(3x1+1)=x+limln2+x1ln(2x1+1)ln3+x1ln(3x1+1)=ln2ln3

————————我是分割线————————

求: lim ⁡ x → 0 tan ⁡ ( tan ⁡ ( . . . ( tan ⁡ x ) ) ) − sin ⁡ ( sin ⁡ ( . . . ( sin ⁡ x ) ) ) x 3 \lim\limits_{x\to0}\frac{\tan(\tan(...(\tan x)))-\sin(\sin(...(\sin x)))}{x^3} x0limx3tan(tan(...(tanx)))sin(sin(...(sinx)))。( tan ⁡ , sin ⁡ \tan,\sin tan,sin各有 n n n个)
先考虑 n = 1 n=1 n=1的情况。只需要把 tan ⁡ x \tan x tanx化成 sin ⁡ x cos ⁡ x \frac{\sin x}{\cos x} cosxsinx然后提取公因式:
lim ⁡ x → 0 tan ⁡ x − sin ⁡ x x 3 = lim ⁡ x → 0 sin ⁡ x cos ⁡ x − sin ⁡ x x 3 = lim ⁡ x → 0 sin ⁡ x ( 1 − cos ⁡ 2 x ) cos ⁡ x x 3 = lim ⁡ x → 0 x ∗ 1 2 x 2 x 3 cos ⁡ x = 1 2 \lim\limits_{x\to0}\frac{\tan x-\sin x}{x^3}=\lim\limits_{x\to0}\frac{\frac{\sin x}{\cos x}-\sin x}{x^3}=\large\lim\limits_{x\to0}\frac{\frac{\sin x(1-\cos^2x)}{\cos x}}{x^3}=\normalsize\lim\limits_{x\to0}\frac{x*\frac{1}{2}x^2}{x^3\cos x}=\frac{1}{2} x0limx3tanxsinx=x0limx3cosxsinxsinx=x0limx3cosxsinx(1cos2x)=x0limx3cosxx21x2=21
如果我们能用 n − 1 n-1 n1 tan ⁡ , sin ⁡ \tan,\sin tan,sin时的答案推出 n n n个时的答案,那么就能递推出结果。
这里前面全是 tan ⁡ \tan tan,后面全是 sin ⁡ \sin sin,不好直接处理。我们希望有些部分是一样的,这样能比较方便简化式子。因此这里在前面减掉一项再加回来:
lim ⁡ x → 0 tan ⁡ ( tan ⁡ ( . . . ( tan ⁡ x ) ) ) − sin ⁡ ( tan ⁡ ( . . . ( tan ⁡ x ) ) ) + sin ⁡ ( tan ⁡ ( . . . ( tan ⁡ x ) ) ) − sin ⁡ ( sin ⁡ ( . . . ( sin ⁡ x ) ) ) x 3 \lim\limits_{x\to 0}\frac{\tan(\tan(...(\tan x)))-\sin(\tan(...(\tan x)))+\sin(\tan(...(\tan x)))-\sin(\sin(...(\sin x)))}{x^3} x0limx3tan(tan(...(tanx)))sin(tan(...(tanx)))+sin(tan(...(tanx)))sin(sin(...(sinx)))
= lim ⁡ x → 0 tan ⁡ ( tan ⁡ ( . . . ( tan ⁡ x ) ) ) − sin ⁡ ( tan ⁡ ( . . . ( tan ⁡ x ) ) ) x 3 + lim ⁡ x → 0 sin ⁡ ( tan ⁡ ( . . . ( tan ⁡ x ) ) ) − sin ⁡ ( sin ⁡ ( . . . ( sin ⁡ x ) ) ) x 3 =\lim\limits_{x\to 0}\frac{\tan(\tan(...(\tan x)))-\sin(\tan(...(\tan x)))}{x^3}+\lim\limits_{x\to 0}\frac{\sin(\tan(...(\tan x)))-\sin(\sin(...(\sin x)))}{x^3} =x0limx3tan(tan(...(tanx)))sin(tan(...(tanx)))+x0limx3sin(tan(...(tanx)))sin(sin(...(sinx)))
由于 x ∼ tan ⁡ x ∼ tan ⁡ ( tan ⁡ x ) ∼ . . . ∼ tan ⁡ ( tan ⁡ ( . . . ( tan ⁡ x ) ) ) x\sim\tan x\sim\tan(\tan x)\sim...\sim\tan(\tan(...(\tan x))) xtanxtan(tanx)...tan(tan(...(tanx))),所以令 t = tan ⁡ ( tan ⁡ ( . . . ( tan ⁡ x ) ) ) t=\tan(\tan(...(\tan x))) t=tan(tan(...(tanx))) n − 1 n-1 n1 tan ⁡ \tan tan),则 t → 0 t\to 0 t0 lim ⁡ t → 0 tan ⁡ t − sin ⁡ t t 3 = 1 2 \lim\limits_{t\to 0}\frac{\tan t-\sin t}{t^3}=\frac{1}{2} t0limt3tantsint=21,也就是说上面左边那个极限是 1 2 \frac{1}{2} 21
对右边那个极限用和差化积: lim ⁡ x → 0 2 cos ⁡ ( tan ⁡ ( . . . ) + sin ⁡ ( . . . ) 2 ) sin ⁡ ( tan ⁡ ( . . . ) − sin ⁡ ( . . . ) 2 ) x 3 \lim\limits_{x\to 0}\frac{2\cos(\frac{\tan(...)+\sin(...)}{2})\sin(\frac{\tan(...)-\sin(...)}{2})}{x^3} x0limx32cos(2tan(...)+sin(...))sin(2tan(...)sin(...))
tan ⁡ ( . . . ) \tan(...) tan(...) sin ⁡ ( . . . ) \sin(...) sin(...)都是0, cos ⁡ 0 = 1 \cos0=1 cos0=1,然后只剩下后面那坨 sin ⁡ \sin sin。由于 x ∼ sin ⁡ x x\sim\sin x xsinx,所以这个极限就是
lim ⁡ x → 0 tan ⁡ ( . . . ) − sin ⁡ ( . . . ) x 3 \lim\limits_{x\to 0}\frac{\tan(...)-\sin(...)}{x^3} x0limx3tan(...)sin(...)。( n − 1 n-1 n1 tan ⁡ , sin ⁡ \tan,\sin tan,sin
如果记 n n n个时的答案为 a n a_n an,那么这个就是 a n − 1 a_{n-1} an1。因此我们可以得到递推式: a n = a n − 1 + 1 2 a_n=a_{n-1}+\frac{1}{2} an=an1+21
a 1 = 1 2 a_1=\frac{1}{2} a1=21 a n = n 2 a_n=\frac{n}{2} an=2n

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值