求从 x x x 到 y y y 的最短路径的数量。
显然应该从 x x x 走到 gcd ( x , y ) \gcd(x, y) gcd(x,y) 再走到 y y y,容易证明这样走是最优的。那么现在只需要把两段的最短路径数量分别求出来就行了。
最短路径数量随便排列组合算一下就好了。
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
const int maxn = 1e5 + 5;
const ll mod = 998244353;
ll qpow(ll b, ll k) {
ll ret = 1;
while (k) {
if (k & 1) ret = ret * b % mod;
b = b * b % mod;
k /= 2;
}
return ret;
}
vector<ll> prime;
ll fact[maxn], ifact[maxn];
void init_fact(int n) {
fact[0] = 1;
for (int i = 1; i <= n; ++i)
fact[i] = fact[i - 1] * i % mod;
ifact[n] = qpow(fact[n], mod - 2);
for (int i = n - 1; i >= 0; --i)
ifact[i] = ifact[i + 1] * (i + 1) % mod;
}
void solve() {
ll x, y;
cin >> x >> y;
ll ans = 1;
ll g = __gcd(x, y);
x /= g, y /= g;
vector<int> vx, vy;
for (auto p : prime) {
int cntx = 0, cnty = 0;
while (x % p == 0) {
x /= p;
cntx++;
}
while (y % p == 0) {
y /= p;
cnty++;
}
vx.push_back(cntx);
vy.push_back(cnty);
}
ans = ans * fact[accumulate(vx.begin(), vx.end(), 0)] % mod;
ans = ans * fact[accumulate(vy.begin(), vy.end(), 0)] % mod;
for (auto i : vx) ans = ans * ifact[i] % mod;
for (auto i : vy) ans = ans * ifact[i] % mod;
cout << ans << endl;
}
int main() {
ios::sync_with_stdio(false);
cin.tie(nullptr);
ll n;
cin >> n;
ll x = n;
for (ll i = 2; i * i <= x; ++i) {
if (x % i != 0) continue;
prime.push_back(i);
while (x % i == 0) x /= i;
}
if (x != 1) prime.push_back(x);
init_fact(2333);
int q;
cin >> q;
while (q--) {
solve();
}
}