总结一下元学习的概念
meta-learning主要是为了解决冷启动或者数据很少的情况,它的想法是学习到任务空间中的一个最优点,这个点与所有任务的最优解是最近的,也就是说学习到一个更好的泛化模型。本质上来说,meta-learning学习的其实是模型参数的一个最优初始化参数。
MAML
下面这幅图比较形象地说明了MAML学习的过程:

θ {\theta} θ代表一个任务模型的参数矩阵,比如说CNN的权重等等。meta-learner就是通过梯度下降去逼近离 θ
元学习(meta-learning)旨在处理数据稀少情况,通过学习任务的通用初始化参数来提升模型的泛化能力。MAML是一种元学习算法,通过梯度下降寻找接近所有任务最优解的参数点。Meta-SGD则进一步考虑了学习率的更新,同时优化模型参数θ和步长α。
总结一下元学习的概念
meta-learning主要是为了解决冷启动或者数据很少的情况,它的想法是学习到任务空间中的一个最优点,这个点与所有任务的最优解是最近的,也就是说学习到一个更好的泛化模型。本质上来说,meta-learning学习的其实是模型参数的一个最优初始化参数。
MAML
下面这幅图比较形象地说明了MAML学习的过程:

θ {\theta} θ代表一个任务模型的参数矩阵,比如说CNN的权重等等。meta-learner就是通过梯度下降去逼近离 θ
3745
4309

被折叠的 条评论
为什么被折叠?
>