2018牛客多校8

本文介绍了两个具体的计数与组合问题:Counting regions问题,使用了特定的数学公式进行求解;Filling pools问题,通过查找OEIS并结合组合数学的方法解决了池塘填充问题。代码中展示了如何利用快速幂运算提高效率。
摘要由CSDN通过智能技术生成

 

https://www.nowcoder.com/acm/contest/146#question

 

G Counting regions

有公式。。。。

#include<bits/stdc++.h>
using namespace std;
#define mod 1000000007
long long qpow(long long x,long long cs)
{
    long long ans=1;
    while(cs)
    {
        if(cs&1)
        ans=ans*x%mod;
        x=x*x%mod;
        cs>>=1;
    }
    return ans;
}
int main(){
    long long n;
    long long i24=qpow(24,mod-2);
    while(~scanf("%lld",&n))
    {
        long long ans=(n-1)*(n-2)%mod;
        ans%=mod;
        long long lss=n*n-3*n+12;
        lss%=mod;
        ans=ans*lss%mod;
        ans=ans*i24%mod;
        printf("%lld\n",ans%mod);
    }
    return 0;
}

 

B Filling pools

oeis了解一下。。。

#include<bits/stdc++.h>
using namespace std;
#define mod 998244353
long long C[270000];
long long qpow(long long x,long long cs)
{
    long long ans=1;
    while(cs)
    {
        if(cs&1)ans=ans*x%mod;
        x=x*x%mod;
        cs>>=1;
    }
    return ans;
}
int main(){
    long long n;
    while(~scanf("%lld",&n))
    {
        if(n==1)
        {
            cout<<"1"<<endl;
            continue;
        }
        C[0]=1;
        n--;
        long long inv;
        for(int i=1;i<=n;i++)
        {
             C[i]=C[i-1]*(n-i+1)%mod;
             inv=qpow(i,mod-2);
             C[i]=C[i]*inv%mod;
             C[i]%=mod;
        }
        long long ans=0;
        for(int i=1;i<=n;i++)
        {
            long long er=qpow(2,i);
            er=er*C[i]%mod;
            er=er*C[i-1]%mod;
            ans=(ans+er)%mod;
        }
        inv=qpow(n,mod-2);
        ans=ans*inv%mod;
        cout<<ans%mod<<endl;
    }
    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值