优化理论系列1——拉格朗日对偶及强弱定理证明(一)

本文探讨了优化问题中的拉格朗日对偶性,特别是在支持向量机(SVM)中的重要性。通过对弱对偶问题和强对偶定理的证明,阐述了对偶问题在解决原问题困难时的优势。文章详细解释了对偶间隙的概念,并提供了强对偶定理的直观理解与证明,强调了在存在等式约束时,如果目标函数和约束是凸函数,对偶间隙将消失。
摘要由CSDN通过智能技术生成

引言

首先要明白为什么要引入对偶问题,或者说为什么要将求解原问题转化为其求解对偶问题。

答:这是因为有些优化问题的原问题很难求解或者是原问题无法用现有的优化方法求解,但其对偶优化问题容易求解。所以在讲到SVM(Support Vector Machines),必定要提到Lagrange Dual问题,而且转化为对偶问题后能引入Kernel Fuction,也就是所谓的核函数。

对偶问题在SVM优化中的地位如此重要,而强弱对偶定理在对偶优化问题又占有重要的地位。一般的机器学习在讲到SVM部分时一般只讲如何将最大间隙问题化为其对偶问题,而对对偶问题中的强弱对偶定理一般只给出结论,比如Andrew NG的机器学习公开课讲义。笔者在最优化方法课程中恰好也学到了对偶理论,一般教科书对强对偶定理的初等证明又晦涩难懂,所以想写一下关于此定理相对通俗易懂的证明,也顺便梳理一下自己对强定理证明的理解。

1.优化原问题和其对偶问题


一般带约束优化问题如下:

findx⃗ Rnminf(x⃗ )s.tgi(x⃗ )0, i=1,...,k.hj(x⃗ )=0, j=1,...,l.

其对偶(Lagrange Dual)问题如下:
findw⃗ ,v⃗ maxθ(w⃗ ,v⃗ )s.tw⃗ 0

其中,
θ(w⃗ ,v⃗ )=inf{ f(x)+i=1kwigi(x)+
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值