强对偶定理的证明_函数的光滑化——从原始与对偶出发

本文详细介绍了函数的光滑化定义及其重要性,特别是针对非光滑函数的Moreau proximal smoothing技术。通过对Moreau envelope的性质分析,证明了它是一种有效的光滑逼近函数,并探讨了其在优化算法中的应用和对收敛性的影响。
摘要由CSDN通过智能技术生成

bccdb9d1b3bedccfb93ca4e1ea8b02cf.png

一、光滑化定义

函数的光滑化是指对一个非光滑函数

equation?tex=f,我们得到一个光滑的函数,假设是
equation?tex=f_%7B%5Cmu%7D 。 这个
equation?tex=f_%7B%5Cmu%7D 要满足两个条件,首先得是光滑的,其次就是不能和原函数
equation?tex=f 差太多,这个是很好理解的。接下来我们正式的定义一下可光滑化(smoothable)

定义1.1. 给定一个凸函数

equation?tex=f ,我们称其为
equation?tex=%28%5Calpha%2C%5Cbeta%29 -smoothable的,如果存在一个凸函数
equation?tex=f_%7B%5Cmu%7D 使得满足
  1. equation?tex=f_%7B%5Cmu%7D
    equation?tex=%5Cfrac%7B%5Calpha%7D%7B%5Cmu%7D 光滑的
  2. equation?tex=f_%7B%5Cmu%7D%28x%29+%5Cleq+f%28x%29+%5Cleq+f_%7B%5Cmu%7D%28x%29+%2B+%5Cbeta+%5Cmu

并且称

equation?tex=f_%7B%5Cmu%7D
equation?tex=f 在参数
equation?tex=%28%5Calpha%2C%5Cbeta%29 下的
equation?tex=%5Cfrac%7B1%7D%7B%5Cmu%7D 光滑逼近。

我们来分析一下这个定义:

  • 第一个条件是光滑,第二个条件是逼近,合起来就是光滑逼近。
  • 再来看下这个
    equation?tex=%5Cmu . 当
    equation?tex=%5Cmu 变大的时候,
    equation?tex=%5Cfrac%7B%5Calpha%7D%7B%5Cmu%7D 变小,那么
    equation?tex=f_%7B%5Cmu%7D 就更加的光滑(光滑系数越小越光滑),但同时
    equation?tex=%5Cbeta+%5Cmu 变大,导致不够逼近。 所以说
    equation?tex=%5Cmu
  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值