局部特征(2)----(转)

本文转自http://blog.csdn.net/jwh_bupt/article/details/7628665
 
局部特征系列:

 --------------------------------------------------------------      

        在入门篇中偶尔谈到了Harris Corner,在这里我们就重点聊一聊Harris Corner。

       Harris Corner是最典型的角点检测子Corner Detector。角点经常被检测在边缘的交界处、被遮挡的边缘、纹理性很强的部分。满足这些条件一般都是稳定的、重复性比较高的点,所以实际上他们是不是角点并不重要(因为我们的目标就是找一些稳定、重复性高的点以作为特征点)。

       Harris Corner基于二阶矩阵:

       

        这个矩阵描述了局部邻域内梯度的分布情况。矩阵的两个特征值可以用来描述两个主要方向上信号的变化,因此特征值可以用来判决是否为特征点。Harris采用的判别方法是:

    

       显而易见,cornerness的值越大,对应的两个特征值都应该很大,其中λ取0.04,是为了抑制比较明显的直线。最后对整幅图像得到的cornerness做一个非极大抑制,得到最后的特征点。Harris角点具有的优点是平移不变、旋转不变,能克服一定光照变化。可以先从一个例子上观察Harris Corner实现的过程:

        

        现在有几个问题:首先3.1式矩阵是如何推导出现的另外一个问题是为什么3.4式用来决定是否为角点(即为何3.1式的两个特征值可以用来描述两个主要方向上信号的变化强度)。

       

  • 第一个问题的解答
    要知道为什么3.1可以作为这个矩阵,我们了解一下具体怎么推出这个式子的,那这又要从 Moravec 算子说起,步骤如下:
    • 将要判断的点置于一个3*3或5*5的图像块的中心,如下图用红色的线环绕的图像块。
    • 将红色的框朝8个方向移动一格,得到蓝色的框(下图为向右上角移动)。导致一个缺点:响应是各向异性的(啥意思?)
    • 将红色的框和蓝色的框的相同坐标值的点的像素值相减,并求平方和,可以得到8个值。
    • 将8个值中的最小的值作为角点像素的变化值。(因为角点应该在x、y方向上变化都比较大;而在边缘上只可能一个方向大、另一个方向小)
    • 求出每一个像素点的角点像素变化值,在局部图像块中,该值最大的点为角点。

        Harris算子将Moravec算子做了两个推广:

       1)用像素的变化梯度代替像素值相减引入高斯窗函数(举个x方向上变化的例子为证)。

            引入高斯窗是为了滤除噪声的干扰。

 [-1,0,1]:x方向上的偏导,[-1,0,1]T:y方向上的偏导。

 

        2)推广出了一个公式这样可以计算任意方向上的像素值变化,而不在是8个固定的方向。

(这里的u、v表示x/y方向的位移)

        因为Vuv(x,y)的最大值才是这个点需要被考虑的值,因此我们重写以上表达式:

                   (3.5)

        看到M矩阵的形式了么?这就是Harris算子的那个原始矩阵,我想推到这里,你也就应该了解Harris矩阵为什么是这样子的了。

 

  • 第二个问题:为什么3.4可以用来描述是否为角点。

    

       那么为什么3.1式的两个特征值能够反映数据在两个方向的变化程度?

       注意(3.5)式的目标函数(最大化Vuv)。而这个目标函数与PCA的目标函数(通过最大化变化推导PCA的投影方程时)完全一致(如果你记不清这个过程,请你看这里,重点看公式2及之后的文字描述。另外我在这里的留言板中也回答了类似的问题)。特征值是十分重要的概念,不仅在这里以及PCA上,在Laplacian EigenmapsLDA上也相应地被使用到。

      

       那么又为什么3.4式取值较大时能保证α和β的取值都很大呢?

             a)   α和β一个大而另一个小时,det小而trace大,‘-’号就能使cornerness小(而‘+’号却使cornerness依然很大,所以必须是减号而不是加号);

             b)   α和β都很小时,显然cornerness很小;

             c)   α和β都很大时(比参数λ更大),此时det会更大于trace从而使cornerness很大。

       可以参考这样一个图:描述了不同纹理下α和β的取值情况(其中α和β是矩阵M的两个特征值):

    • 没有什么纹理的情况下,两个值都很小(很小的正值)
    • 边缘的点,一个值大,另外一个值小(由于k取了很小的值,所以3.4的结果为一个小负值)
    • 角点:两个值都比较大(比较大的正值)

        这样,当我们把目标函数定义为3.4式的时候,得到的结果就会尽力满足两个特征值都比较大了。当然,除此之外,还有Harmonic mean等方式实现更理想的组合方式达到检测出的两个特征值都尽可能大。

       


 

       最后附上检测效果图(右图进行了旋转)

    两个图可以看出来Harris corner是rotation invariant,但是不是scale invariant。

------------------------------

jiang1st2010

原文地址:http://blog.csdn.net/jiang1st2010/article/details/7628665

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
在信号处理领域,DOA(Direction of Arrival)估计是一项关键技术,主要用于确定多个信号源到达接收阵列的方向。本文将详细探讨三种ESPRIT(Estimation of Signal Parameters via Rotational Invariance Techniques)算法在DOA估计中的实现,以及它们在MATLAB环境中的具体应用。 ESPRIT算法是由Paul Kailath等人于1986年提出的,其核心思想是利用阵列数据的旋不变性来估计信号源的角度。这种算法相比传统的 MUSIC(Multiple Signal Classification)算法具有较低的计算复杂度,且无需进行特征值分解,因此在实际应用中颇具优势。 1. 普通ESPRIT算法 普通ESPRIT算法分为两个主要步骤:构造等效旋不变系统和估计角度。通过空间平移(如延时)构建两个子阵列,使得它们之间的关系具有旋不变性。然后,通过对子阵列数据进行最小二乘拟合,可以得到信号源的角频率估计,进一步换为DOA估计。 2. 常规ESPRIT算法实现 在描述中提到的`common_esprit_method1.m`和`common_esprit_method2.m`是两种不同的普通ESPRIT算法实现。它们可能在实现细节上略有差异,比如选择子阵列的方式、参数估计的策略等。MATLAB代码通常会包含预处理步骤(如数据归一化)、子阵列构造、旋不变性矩阵的建立、最小二乘估计等部分。通过运行这两个文件,可以比较它们在估计精度和计算效率上的异同。 3. TLS_ESPRIT算法 TLS(Total Least Squares)ESPRIT是对普通ESPRIT的优化,它考虑了数据噪声的影响,提高了估计的稳健性。在TLS_ESPRIT算法中,不假设数据噪声是高斯白噪声,而是采用总最小二乘准则来拟合数据。这使得算法在噪声环境下表现更优。`TLS_esprit.m`文件应该包含了TLS_ESPRIT算法的完整实现,包括TLS估计的步骤和旋不变性矩阵的改进处理。 在实际应用中,选择合适的ESPRIT变体取决于系统条件,例如噪声水平、信号质量以及计算资源。通过MATLAB实现,研究者和工程师可以方便地比较不同算法的效果,并根据需要进行调整和优化。同时,这些代码也为教学和学习DOA估计提供了一个直观的平台,有助于深入理解ESPRIT算法的工作原理。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值